精英家教网 > 高中数学 > 题目详情
12.已知点F是抛物线C:y2=4x的焦点,点A在抛物线C上,若|AF|=4,则线段AF的中点到抛物线C的准线的距离为(  )
A.4B.3C.2D.1

分析 过点A作准线x=-1的垂线,垂足为A1,设准线x=-1与x轴交于点K,由抛物线的定义得|AA1|=|AF|=4,利用梯形中位线定理得线段AF的中点到准线的距离.

解答 解:过点A作准线x=-1的垂线,垂足为A1,设准线x=-1与x轴交于点K,由抛物线的定义得|AA1|=|AF|=4,
因为|FK|=2,所以由梯形中位线定理得线段AF的中点到准线的距离为$d=\frac{1}{2}(|{FK}|+|{A{A_1}}|)=3$,
故选:B.

点评 本题考查抛物线的简单性质的应用,直线与抛物线的位置关系,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.函数f(x)=$\left\{\begin{array}{l}{x^2}-2x,x≥0\\ \frac{1}{x},x<0\end{array}$,且f(1)+f(a)=-2,则a的取值集合为{-1,1}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=xlnx-mx2
(Ⅰ)当m=0时,求函数f(x)的单调区间;
(Ⅱ)若$\frac{{x}^{2}-x}{f(x)}$>1对任意的x∈[$\sqrt{e}$,e2]恒成立,求实数m的取值范围;
(Ⅲ)若x1,x2∈($\frac{1}{e}$,1),x1+x2<1,求证:x1x2<(x1+x24.(参考数据:e=2.71828…)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.形如$\frac{2}{n}(n=5,7,9,11,…)$的分数的分解:$\frac{2}{5}=\frac{1}{3}+\frac{1}{15}$,$\frac{2}{7}=\frac{1}{4}+\frac{1}{28}$,$\frac{2}{9}=\frac{1}{5}+\frac{1}{45}$,按此规律,$\frac{2}{n}$=$\frac{1}{\frac{n+1}{2}}$+$\frac{1}{\frac{n(n+1)}{2}}$(n=5,7,9,11,…).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.$|\frac{1+2i}{2-i}|$=(  )
A.$\frac{3}{5}$B.1C.$\frac{5}{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=ex[x2-(m+2)x+2m+1].
(1)若函数f(x)在(0,2)上无极值,求实数m的值;
(2)若m>1,且存在实数x0∈(0,2),使得f(x0)是f(x)在[0,2]上的最大值,求实数m的取值范围;
(3)若不等式$\frac{f(x)}{e^x}≥2lnx-\frac{1}{x^2}+2m+1$对于任意0<x≤1恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=ax2-(a+2)x+lnx,其中a>0,
(1)若x=1是f(x)的极值点,求a;
(2)若f(x)在区间[1,e]上的最小值为-2,求a的取值范围;
(3)设g(x)=-$\int_0^x$[f(t)-lnt+at]dt,若对于任意的x1∈(2,+∞),都存在x2∈(1,+∞),使得g(x1)•g(x2)=1,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=$\frac{ln(2x)}{x}$
(1)求f(x)在[1,a](a>1)上的最小值;
(2)若关于x的不等式f2(x)+mf(x)>0只有两个整数解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知集合A={x|$\frac{2x+1}{x-2}$<0},B={x|x2>1},则A∩(∁RB)=(  )
A.(-$\frac{1}{2}$,1]B.[-1,$\frac{1}{2}$)C.(-$\frac{1}{2}$,$\frac{1}{2}$]D.($\frac{1}{2}$,1)

查看答案和解析>>

同步练习册答案