精英家教网 > 高中数学 > 题目详情
已知直角坐标平面上任意两点P(x1,y1),QP(x2,y2),定义d(P,Q)
|x2-x1|,|x2-x1|≥|y2-y1|
|y2-y1|,|x2-x1|<|y2-y1|
为P,Q两点的“非常距离”.当平面上动点M(x,y)到定点A(a,b)的距离满足|MA|=3时,则d(M,A)的取值范围是
 
考点:进行简单的合情推理
专题:新定义,直线与圆
分析:由题意可知点M在以A为圆心,r=3为半径的圆周上,由“非常距离”的新定义,求出d(M,A)的最小值与最大值,即可得出结论.
解答: 解:由题意可知点M在以A为圆心,r=3为半径的圆周上,如图所示:

由“非常距离”的新定义可知:当|x-a|=|y-b|时,d(M,A)取得最小值,d(M,A)min=
3
2
2

当|x-a|=3,|y-b|=0或|x-a|=0,|y-b|,=3时,d(M,A)取得最大值,d(M,A)max=3,
故d(M,A)的取值范围为[
3
2
2
,3].
故答案为:[
3
2
2
,3].
点评:本题以新定义为载体,考查数学概念的新定义,数形结合的思想,考查了距离公式的简单应用,属于基础试题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在等差数列{an}中,a1=3,其前n项和为Sn,等比数列{bn}的各项均为正数,b1=1,公比为q,且b2+S2=12,q=
S2
b2

(1)求an与bn
(2)设数列{cn}满足cn=|bn-a5|,求{cn}的前项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

设实数x,y满足
x≤y
y≤10-2x
x≥1
,向量
a
=(2x-y,m),
b
=(-1,1).若
a
b
,则实数m的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知一个容量为80的样本,把它分为6组,第三组到第六组的频数分别为10,12,14,20,第一组的频率为0.2,那么第一组的频数是
 
;第二组的频率是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=log2
x
4
,等比数列{an}中,a2•a5•a8=8,则f(a1)+f(a2)+…+f(a9)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x丨f(x)=x},B={x丨f[f(x)]=x},其中函数f(x)=x2+ax+b(a、b为实数).若A是单元素集,则A、B之间的关系是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列有关命题的说法正确的是(  )
A、命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1”
B、若p∨q为真命题,则p、q均为真命题.
C、命题“存在x∈R,使得x2+x+1<0”的否定是:“对任意x∈R,均有x2+x+1<0”
D、命题“若x=y,则sinx=siny”的逆否命题为真命题

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|2x2+7x-15<0},B={x|x2+ax+b≤0},若A∩B=∅,A∪B={x|-5<x≤2},则实数a,b的值分别是(  )
A、2,4
B、
1
2
,4
C、
11
2
,5
D、-
7
2
,3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线C:
x2
m
-y2=1(m>0)
,A.B两点分别在双曲线C的两条渐近线上,且|AB|=2
m
,又点P为AB的中点.
(1)求点P的轨迹方程并判断其形状;
(2)若不同三点D(-2,0)、S、T 均在点P的轨迹上,且
DS
ST
=0
; 求T点横坐标xT的取值范围.

查看答案和解析>>

同步练习册答案