精英家教网 > 高中数学 > 题目详情
已知双曲线C:
x2
m
-y2=1(m>0)
,A.B两点分别在双曲线C的两条渐近线上,且|AB|=2
m
,又点P为AB的中点.
(1)求点P的轨迹方程并判断其形状;
(2)若不同三点D(-2,0)、S、T 均在点P的轨迹上,且
DS
ST
=0
; 求T点横坐标xT的取值范围.
考点:直线与圆锥曲线的综合问题
专题:综合题,圆锥曲线的定义、性质与方程
分析:(1)设出A,B的坐标,利用点P为AB的中点,确定坐标之间的关系,根据|AB|=2
m
,建立方程,化简,即可求点P的轨迹方程.
(2)直线DS、ST分别代入椭圆方程,求出T点横坐标,利用基本不等式,即可求T点横坐标xT的取值范围.
解答: 解:(1)双曲线渐近线为y=
x
m
y=-
x
m

所以设A(xA
xA
m
)
B(xB,-
xB
m
)

所以xP=
xA+xB
2
yP=
xA-xB
2
m

|AB|=2
m

所以点P的轨迹方程为
x2
m2
+y2=1

所以m=1时P的轨迹为圆;m>1时P的轨迹为焦点在x轴上的椭圆;0<m<1时P的轨迹为焦点在y轴上的椭圆;(6分)
(2)把D(-2,0)代入
x2
m2
+y2=1
,得P的轨迹的
x2
4
+y2=1
…①
设直线DS为y=k(x+2)…②
联立①②得(1+4k2)x2+16k2x+16k2-4=0
设点S(x1,y1),有xD+x1=
-16k2
1+4k2

所以x1=
2-8k2
1+4k2
y1=
4k
1+4k2

则直线ST为y=-
1
k
(x-x1)+y1

化简为:y=-
x
k
+
2-4k2
k(1+4k2)

联立①,③得(1+
4
k2
)x2+
32k2-16
k2(1+4k2)
x+
4(2-4k2)2
k2(1+4k2)2
-4=0

所以x1+xT=
16-32k2
(4+k2)(1+4k2)

所以xT=
16-32k2
(4+k2)(1+4k2)
-
2-8k2
1+4k2
=
8k4-2k2+8
4k4+17k2+4
=2-
36k2
4k4+17k2+4
( 因为三点不同,易知k≠0)
=2-
36k2
4k4+17k2+4
=
36
4(k2+
1
k2
)+17
≥2-
36
25
=
14
25

所以xT的取值范围为[
14
25
,2)
…(14分)
点评:本题考查轨迹方程,考查代入法的运用,考查直线与椭圆的位置关系,考查韦达定理的运用,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知直角坐标平面上任意两点P(x1,y1),QP(x2,y2),定义d(P,Q)
|x2-x1|,|x2-x1|≥|y2-y1|
|y2-y1|,|x2-x1|<|y2-y1|
为P,Q两点的“非常距离”.当平面上动点M(x,y)到定点A(a,b)的距离满足|MA|=3时,则d(M,A)的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系xOy中,点P到两点(
2
,0),(-
2
,0)
的距离之和等于4,设点P的轨迹为C,直线y=kx+1与C交于A,B两点.
(1)线段AB的长是3,求实数k;
(2)(理)若点A在第四象限,当k<0时,判断|
OA
|与|
OB
|的大小,并证明.
     (文)求证:
OA
OB
<0

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直三棱柱ABC-A1B1C1中,AB=BB1=1,AC=
2
,直线B1C与平面ABC成45°角.
(1)求证:平面A1B1C⊥平面B1BCC1
(2)求二面角A-B1C-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

四棱锥P-ABCD中,底面ABCD是边长为2a的菱形,∠BAD=60°,侧棱PA⊥平面ABCD,且PA=
3
a,求:
(1)二面角P-BD-A的大小;
(2)点A到平面PBD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

在如图所示的几何体中,四边形ABCD和BDMN都是矩形,且MD⊥平面ABCD,P是MN的中点.若AB=4,BC=3,MD=1,
(Ⅰ)求证:DP∥平面ANC;
(Ⅱ)求二面角N-AC-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中,a,b,c分别为∠A,∠B,∠C的对边,∠B=60°,b=2,a=x,如c有两组解,则x的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=sin2x+cos2x的最小正周期为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

A、B是直二面角α-l-β的棱l上的两点,分别在α,β内作垂直于棱l的线段AC,BD,已知AB=AC=BD=1,那么CD的长为(  )
A、1
B、2
C、
2
D、
3

查看答案和解析>>

同步练习册答案