精英家教网 > 高中数学 > 题目详情
函数f(x)=sin2x+cos2x的最小正周期为
 
考点:三角函数的周期性及其求法
专题:三角函数的求值
分析:f(x)解析式第一项利用二倍角的余弦函数公式化简,整理后找出ω的值,代入周期公式即可求出最小正周期.
解答: 解:f(x)=sin2x+cos2x=
1-cos2x
2
+cos2x=
1
2
cos2x+
1
2

∵ω=2,∴f(x)最小正周期T=
2
=π.
故答案为:π
点评:此题考查了三角函数的周期性及其求法,熟练掌握周期公式是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知集合A={x|2x2+7x-15<0},B={x|x2+ax+b≤0},若A∩B=∅,A∪B={x|-5<x≤2},则实数a,b的值分别是(  )
A、2,4
B、
1
2
,4
C、
11
2
,5
D、-
7
2
,3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线C:
x2
m
-y2=1(m>0)
,A.B两点分别在双曲线C的两条渐近线上,且|AB|=2
m
,又点P为AB的中点.
(1)求点P的轨迹方程并判断其形状;
(2)若不同三点D(-2,0)、S、T 均在点P的轨迹上,且
DS
ST
=0
; 求T点横坐标xT的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a,b∈R+,现有下列命题:
①若a2-b2=1,则a-b<1;
②若
1
b
-
1
a
=1
,则a-b<1;
③若|
a
-
b
|=1
,则|a-b|<1;
④若|a2-b2|=1,则|a-b|<1
其中正确命题的序号为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知AB和AC是圆的两条弦,过点B作圆的切线与AC的延长线相交于D,过点C作BD的平行线与圆交于点E,与AB相交于点F,AF=6,FB=2,EF=3,则线段CD的长为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

以下列结论中:
(1)|
a
b
|≤|
a
||
b
|

(2)
a
(
a
b
)=
a
2
b

(3)如果
a
b
<0
,那么
a
b
的夹角为钝角;
(4)若
a
是直线l的方向向量,则λ
a
(λ∈R)
也是直线l的方向向量;
(5)
a
b
=
b
c
b
=
0
的必要不充分条件.
正确结论的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若x∈[1,+∞),不等式(m-m2)2x+4x+1>0恒成立,则实数m的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在下列命题中:
①若
a
b
共线,则
a
b
所在的直线平行;
②若
a
b
所在的直线是异面直线,则
a
b
一定不共面;
③若
a
b
c
三向量两两共面,则
a
b
c
三向量一定也共面;
④已知三向量
a
b
c
,则空间任意一个向量
p
总可以唯一表示为
p
=x
a
+y
b
+z
c

其中真命题的个数为(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
2
sin(
π
4
-x)+4sin
x
2
cos
x
2

(Ⅰ)在△ABC中,cosA=-
3
5
,求f(A)的值;
(Ⅱ)求函数f(x)的最小正周期及函数的单调递增区间.

查看答案和解析>>

同步练习册答案