精英家教网 > 高中数学 > 题目详情
函数f(x)=
2
sin(
π
4
-x)+4sin
x
2
cos
x
2

(Ⅰ)在△ABC中,cosA=-
3
5
,求f(A)的值;
(Ⅱ)求函数f(x)的最小正周期及函数的单调递增区间.
考点:三角函数中的恒等变换应用,三角函数的周期性及其求法
专题:三角函数的图像与性质
分析:(Ⅰ)利用三角恒等变换可得f(x)=cosx+sinx,在△ABC中,cosA=-
3
5
⇒sinA=
1-cos2A
=
4
5
,于是可得f(A)的值;
(Ⅱ)由于f(x)=
2
sin(x+
π
4
),利用正弦函数的周期性与单调性即可求函数f(x)的最小正周期及函数的单调递增区间.
解答: 解:(Ⅰ)∵f(x)=
2
2
2
cosx-
2
2
sinx)+2sinx=cosx+sinx,
∵在△ABC中,cosA=-
3
5

∴sinA=
1-cos2A
=
4
5

∴f(A)=cosA+sinA=
1
5

(Ⅱ)∵f(x)=
2
2
2
cosx+
2
2
sinx)
=
2
sin(x+
π
4
),
∴函数f(x)的最小正周期T=2π;
由-
π
2
+2kπ≤x+
π
4
π
2
+2kπ(k∈Z)得:-
4
+2kπ≤x≤
π
4
+2kπ(k∈Z),
∴函数f(x)的单调递增区间为[-
4
+2kπ,
π
4
+2kπ](k∈Z).
点评:本题考查三角函数中的恒等变换应用,考查正弦函数的周期性与单调性,考查同角三角函数间的关系,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数f(x)=sin2x+cos2x的最小正周期为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

A、B是直二面角α-l-β的棱l上的两点,分别在α,β内作垂直于棱l的线段AC,BD,已知AB=AC=BD=1,那么CD的长为(  )
A、1
B、2
C、
2
D、
3

查看答案和解析>>

科目:高中数学 来源: 题型:

设公比大于零的等比数列{an}的前n项和为Sn,且a1=1,S4=5S2,数列{bn}的前n项和为Tn,满足b1=1,Tn=n2bn,n∈N*
(Ⅰ)求数列{an}、{bn}的通项公式;
(Ⅱ)满足bn
λ
an
对所有的n∈N*均成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a,b,c分别为角A,B,C的对边,b=2c,且B-C=
π
3

(1)求角C;
(2)若c=1,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图甲,△ABC是边长为6的等边三角形,E,D分别为AB、AC靠近B、C的三等分点,点G为BC边的中点.线段AG交线段ED于F点,将△AED沿ED翻折,使平面AED⊥平面BCDE,连接AB、AC、AG形成如图乙所示的几何体.
(Ⅰ)求证BC⊥平面AFG;
(Ⅱ)求二面角B-AE-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

向量
a
=(sin
6
x,
1
2
),
b
=(
3
2
,cos
6
x)
,k>0.函数f(x)=
a
b

(Ⅰ)若k=12,求函数f(x)的单调减区间;
(Ⅱ)将函数f(x)的图象向左平移
2
k
个单位得到函数g(x),如果函数g(x)在x∈(0,2014]上至少存在2014个最值点,求k的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥A-BCDE中,底面四边形BCDE是等腰梯形,BC∥DE,∠DCB=45°,O是BC的中点,AO=
3
,且BC=6,AD=AE=2CD=2
2

(1)证明:AO⊥平面BCD;
(2)求二面角A-CD-B的平面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在长方体ABCD-A1B1C1D1中AA1=AD=1,E为CD中点.
(1)在棱AA1上是否存在一点P,使得DP∥平面B1AE?若存在,求AP的长;若不存在,说明理由.
(2)若二面角A-B1E-A1的大小为30°,求AB的长.

查看答案和解析>>

同步练习册答案