精英家教网 > 高中数学 > 题目详情
如图甲,△ABC是边长为6的等边三角形,E,D分别为AB、AC靠近B、C的三等分点,点G为BC边的中点.线段AG交线段ED于F点,将△AED沿ED翻折,使平面AED⊥平面BCDE,连接AB、AC、AG形成如图乙所示的几何体.
(Ⅰ)求证BC⊥平面AFG;
(Ⅱ)求二面角B-AE-D的余弦值.
考点:用空间向量求平面间的夹角,直线与平面垂直的判定,与二面角有关的立体几何综合题
专题:空间位置关系与距离,空间向量及应用
分析:(Ⅰ)由已知条件推导出DE⊥AF,DE⊥GF,DE∥BC,DE⊥平面AFG.由此能够证明BC⊥平面AFG.
(Ⅱ) 以点F为坐标原点,分别以FG,FD,FA所在的直线为x,y,z轴,建立空间直角坐标系,利用向量法能求出二面角B-AE-D的余弦值.
解答: (Ⅰ)证明:在图甲中,
∵△ABC是边长为6的等边三角形,
E,D分别为AB、AC靠近B、C的三等分点,点G为BC边的中点,
∴DE⊥AF,DE⊥GF,DE∥BC.…(2分)
在图乙中,
∵DE⊥AF,DE⊥GF,AF∩FG=F,∴DE⊥平面AFG.
又∵DE∥BC,∴BC⊥平面AFG.…(4分)
(Ⅱ)∵平面AED⊥平面BCDE,平面AED∩平面BCDE=DE,DE⊥AF,DE⊥GF,
∴FA,FD,FG两两垂直.
以点F为坐标原点,分别以FG,FD,FA所在的直线为x,y,z轴,
建立如图所示的空间直角坐标系F-xyz.
则由题意知:A(0,0,2
3
)
B(
3
,-3,0)
,E(0,-2,0),
AB
=(
3
,-3,-2
3
)
BE
=(-
3
,1
,0).…(6分)
设平面ABE的一个法向量为
n
=(x,y,z)

n
AB
=0
n
BE
=0
,∴
3
x-3y-2
3
z=0
-
3
x+y=0

取x=1,则y=
3
,z=-1,∴
n
=(1,
3
,-1)
.…(8分)
显然
m
=(1,0,0)
为平面ADE的一个法向量,
所以cos<
m
n
>=
m
n
|
m
|•|
n
|
=
5
5
.…(10分)
∵二面角B-AE-D为钝角,
∴二面角B-AE-D的余弦值为-
5
5
.…(12分)
点评:本题考查直线与平面垂直的证明,考查二面角的余弦值的求法,解题时要注意空间思维能力的培养,注意向量法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

以下列结论中:
(1)|
a
b
|≤|
a
||
b
|

(2)
a
(
a
b
)=
a
2
b

(3)如果
a
b
<0
,那么
a
b
的夹角为钝角;
(4)若
a
是直线l的方向向量,则λ
a
(λ∈R)
也是直线l的方向向量;
(5)
a
b
=
b
c
b
=
0
的必要不充分条件.
正确结论的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图是一个算法框图,则输出的k的值是(  )
A、5B、6C、7D、8

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=cos2x+cos2(x+α)+cos2(x+β),其中α、β为常数,且满足0<α<β<π.对于任意实数x,是否存在α、β,使得f(x)是与x无关的定值?若存在,求出α、β的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
2
sin(
π
4
-x)+4sin
x
2
cos
x
2

(Ⅰ)在△ABC中,cosA=-
3
5
,求f(A)的值;
(Ⅱ)求函数f(x)的最小正周期及函数的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=2x,g(x)=4x,且满足g[g(x)]>g[f(x)]>f[g(x)],求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

画出图中3个图形的指定三视图(之一).

查看答案和解析>>

科目:高中数学 来源: 题型:

在四棱锥P-ABCD中,PA⊥平面ABCD,AD∥BC,BC=2AD=4,AB=CD=
10

(Ⅰ)证明:BD⊥平面PAC;
(Ⅱ)若二面角A-PC-D的大小为60°,求AP的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,Q为AD的中点,M是棱PC上的点,PA=PD=2,BC=
1
2
AD=1,CD=
3

(1)求证:平面PQB⊥平面PAD; 
(2)若二面角M-QB-C为30°,试确定点M的位置.

查看答案和解析>>

同步练习册答案