精英家教网 > 高中数学 > 题目详情
画出图中3个图形的指定三视图(之一).
考点:简单空间图形的三视图
专题:作图题
分析:长方体的正视图为长方形;五棱柱的正视图为矩形,同时看到的棱画实线,看不到的棱画虚线;圆柱的俯视图为矩形.
解答: 解:三个几何体的视图如图所示:
点评:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形;在画图时一定要将物体的边缘、棱、顶点都体现出来.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列命题:
①直线y=2x在x,y轴上的截距相等; 
②直线ax+2y=1与直线x+y=0平行的充要条件是a=2;
③世界上第一个把π计算到3.1415926<π<3.1415927的是中国人祖冲之;  
④抛两枚均匀的骰子,恰好出现一奇一偶的概率为
1
4
; 
⑤满足||PF1|-|PF2||=2a(a>0)的动点P的轨迹是双曲线;
⑥设P(x、y)是曲线
x2
25
+
y2
9
=1
上的点,F1(-4,0),F2(4,0),则必有|PF1|+|PF2|<10.
其中错误的命题序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设公比大于零的等比数列{an}的前n项和为Sn,且a1=1,S4=5S2,数列{bn}的前n项和为Tn,满足b1=1,Tn=n2bn,n∈N*
(Ⅰ)求数列{an}、{bn}的通项公式;
(Ⅱ)满足bn
λ
an
对所有的n∈N*均成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图甲,△ABC是边长为6的等边三角形,E,D分别为AB、AC靠近B、C的三等分点,点G为BC边的中点.线段AG交线段ED于F点,将△AED沿ED翻折,使平面AED⊥平面BCDE,连接AB、AC、AG形成如图乙所示的几何体.
(Ⅰ)求证BC⊥平面AFG;
(Ⅱ)求二面角B-AE-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

向量
a
=(sin
6
x,
1
2
),
b
=(
3
2
,cos
6
x)
,k>0.函数f(x)=
a
b

(Ⅰ)若k=12,求函数f(x)的单调减区间;
(Ⅱ)将函数f(x)的图象向左平移
2
k
个单位得到函数g(x),如果函数g(x)在x∈(0,2014]上至少存在2014个最值点,求k的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直三棱柱ABC-A1B1C1中,AA1=AB=BC=3,AC=2,D是AC的中点.
(Ⅰ)求证:B1C∥平面A1BD;
(Ⅱ)求二面角A1-BD-B1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥A-BCDE中,底面四边形BCDE是等腰梯形,BC∥DE,∠DCB=45°,O是BC的中点,AO=
3
,且BC=6,AD=AE=2CD=2
2

(1)证明:AO⊥平面BCD;
(2)求二面角A-CD-B的平面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,斜三棱柱ABC-A1B1C1的侧棱长为
2
,底面是边长为1的正三角形,∠A1AB=∠A1AC=45°.
(Ⅰ)求异面直线AA1与BC所成的角;
(Ⅱ)求此棱柱的表面积和体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,底面ABCD是边长为2的正方形,PB⊥BC,PD⊥CD,且PA=2,E为PD中点.
(1)求二面角B-EC-A的正弦值;
(2)在线段BC上是否存在点F,使得E到平面PAF的距离为
2
5
5
?若存在,确定点F的位置,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案