精英家教网 > 高中数学 > 题目详情
在△ABC中,a,b,c分别为角A,B,C的对边,b=2c,且B-C=
π
3

(1)求角C;
(2)若c=1,求△ABC的面积.
考点:正弦定理
专题:三角函数的图像与性质
分析:(1)将b=2c利用正弦定理化简,把B=
π
3
+C代入,利用两角和与差的正弦函数公式化简,整理后利用同角三角函数间的基本关系求出tanC的值,即可确定出C的度数;
(2)由C的度数求出B的度数为
π
2
,在直角三角形中,求出b与a的值,利用三角形面积公式即可求出△ABC的面积.
解答: 解:(1)∵b=2c,由正弦定理,得b=2RsinB,c=2RsinC,
∴将其代入,得sinB=2sinC,
∵B-C=
π
3
,∴B=
π
3
+C,
将其代入上式,得sin(
π
3
+C)=2sinC,
∴sin
π
3
cosC+cos
π
3
sinC=
3
2
cosC+
1
2
sinC=2sinC,即
3
2
cosC=
3
2
sinC,
整理得,
3
sinC=cosC,即tanC=
3
3

∵角C是三角形的内角,
∴C=
π
6

(2)∵C=
π
6
,∴B=
π
3
+
π
6
=
π
2

又∵c=1,∴b=2c=2,
∴根据勾股定理得:a=
b2-c2
=
3

∴S△ABC=
1
2
acsinB=
3
2
点评:此题考查了正弦定理,三角形的面积公式,熟练掌握正弦定理是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知AB和AC是圆的两条弦,过点B作圆的切线与AC的延长线相交于D,过点C作BD的平行线与圆交于点E,与AB相交于点F,AF=6,FB=2,EF=3,则线段CD的长为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法:
①命题“若x>0,则2x>1”的否命题是“若x≤0,则2x≤1”;
②关于x的不等式a<sin2x+
1
sin2x
恒成立,则a的取值范围是a<3;
③函数f(x)=alog2|x|+x+b为奇函数的充要条件是a+b=0;
其中正确的个数是(  )
A、3B、2C、1D、0

查看答案和解析>>

科目:高中数学 来源: 题型:

我们称与函数C1:y=f(x)(x∈G,y∈N)的解析式和值域相同,定义域不同的函数C2:y=f(x)(x∈M,y∈N)为C1的异构函数,则f(x)=log2|x|(x∈{1,2,4})的异构函数有(  )个.
A、8B、9C、26D、27

查看答案和解析>>

科目:高中数学 来源: 题型:

若不等式
x2-8x+20
mx2-mx-1
<0对?x恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
2
sin(
π
4
-x)+4sin
x
2
cos
x
2

(Ⅰ)在△ABC中,cosA=-
3
5
,求f(A)的值;
(Ⅱ)求函数f(x)的最小正周期及函数的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,PCBM是直角梯形,∠PCB=90°,PM∥BC,PM=PC=AC=1,BC=2,又∠ACB=120°,AB⊥PC.
(1)求证:平面PAC⊥平面ABC;
(2)求二面角M-AC-B的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,侧面PDC是边长为2的正三角形,且与底面垂直,底面ABCD是梯形,AD∥BC且∠ADC=60°,BC=2AD=4.
(1)求证:DC⊥PA;
(2)在PB上是否存在一点M(不包含端点P,B)使得二面角C-AM-B为直二面角,若存在求出PM的长,若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知四棱锥P-ABCD中,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E、F分别是BC,PC的中点.
(1)证明:AE⊥平面PAD;
(2)若H为PD上的动点,EH与平面PAD所成最大角的正切值为
3
,求二面角E-AF-C的余弦值.

查看答案和解析>>

同步练习册答案