精英家教网 > 高中数学 > 题目详情
如图,PCBM是直角梯形,∠PCB=90°,PM∥BC,PM=PC=AC=1,BC=2,又∠ACB=120°,AB⊥PC.
(1)求证:平面PAC⊥平面ABC;
(2)求二面角M-AC-B的平面角的余弦值.
考点:与二面角有关的立体几何综合题,平面与平面垂直的判定
专题:空间位置关系与距离,空间向量及应用
分析:(1)由已知条件推导出PC⊥平面ABC,由此能证明平面PAC⊥平面ABC.
(2)几何法:取BC的中点N,则CN=1,连接AN,MN,由已知条件能推导出MN⊥平面ABC,作NH⊥AC,得到∠MHN为二面角M-AC-B的平面角,由此能求出结果.
向量法:在平面ABC内,过C作CD⊥CB,建立空间直角坐标系C-xyz,利用向量法能求出二面角M-AC-B的平面角的余弦值.
解答: (1)证明:∵PC⊥AB,PC⊥BC,AB∩BC=B,
∴PC⊥平面ABC,…(2分)
又∵PC?平面PAC,
∴平面PAC⊥平面ABC.…(5分)
(2)解法一:(几何法)
取BC的中点N,则CN=1,连接AN,MN,
∵PM∥CN,PM=CN
∴MN∥PC,MN=PC,
从而MN⊥平面ABC
作NH⊥AC,交AC的延长线于H,连接MH,则由三垂线定理知,AC⊥NH,
∴∠MHN为二面角M-AC-B的平面角
在△CNH中,NH=CN•sin∠NCH=1×
3
2
=
3
2

在△MNH中,MH=
NH2+MN2
=
(
3
2
)
2
+12
=
7
2

则cos∠MHN=
NH
MH
=
21
7

解法二:(向量法)
在平面ABC内,过C作CD⊥CB,建立空间直角坐标系C-xyz(如图)…(6分)
由题意有A(
3
2
,-
1
2
,0),M(0,0,1)
CM
=(0,1,1),
CA
=(
3
2
,-
1
2
,0
),
设平面MAC的一个法向量为
n
=(x1y1z1)

n
CM
=0
n
CA
=0

y1+z1=0
3
2
x1-
1
2
y1=0
,取x1=1,得
n
=(1,
3
,-
3
)
…(9分)
平面ABC的法向量取为
m
=(0,0,1)
…(10分)
m
n
所成的角为θ,则cosθ=
-
3
7
=-
21
7
,…(11分)
显然,二面角M-AC-B的平面角为锐角,
故二面角M-AC-B的平面角的余弦值为
21
7
.…(12分)
点评:本题考查平面与平面垂直的证明,考查二面角的余弦值的求法,解题时要认真审题,注意空间思维能力的培养.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

圆x2+y2=4上的点到直线4x-3y+25=0的距离的最大值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

“p∨q是真命题”是“?p为假命题”的(  )
A、必要不充分条件
B、充分不必要条件
C、充分必要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a,b,c分别为角A,B,C的对边,b=2c,且B-C=
π
3

(1)求角C;
(2)若c=1,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,A,B是海平面上的两个小岛,为测量A,B两岛间的距离,测量船以15海里/小时的速度沿既定直线CD航行,在t1时刻航行到C处,测得∠ACB=75°,∠ACD=120°,1小时后,测量船到达D处,测得∠ADC=30°,∠ADB=45°,求A,B两小岛间的距离.(注:A、B、C、D四点共面)

查看答案和解析>>

科目:高中数学 来源: 题型:

向量
a
=(sin
6
x,
1
2
),
b
=(
3
2
,cos
6
x)
,k>0.函数f(x)=
a
b

(Ⅰ)若k=12,求函数f(x)的单调减区间;
(Ⅱ)将函数f(x)的图象向左平移
2
k
个单位得到函数g(x),如果函数g(x)在x∈(0,2014]上至少存在2014个最值点,求k的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,△BCD与△MCD都是边长为2的正三角形,平面MCD⊥平面BCD,AB⊥平面BCD,且AB=2
3

(1)求证:AB∥平面CDM;
(2)求平面ACM与平面BCD所成二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某市统计局就某地居民的月收入调查了10000人,并根据所得数据画出样本的频率分布直方图(每个分组包括左端点.不包括右端点.如第一组表示收入在[1000,1500)
(1)求居民收入在[3000,3500)的频率;
(2)根据频率分布直方图算出样本数据的中位数及样本数据的平均数;
(3)为了分析居民的收入与年龄、职业等方面的关系,必须按月收入再从这10000人中按分层抽样方法抽出100人作进一步分析,则月收入在[2500,3000)的这段应抽取多少人?

查看答案和解析>>

科目:高中数学 来源: 题型:

用红,黄,蓝三种颜色涂标有1,2,…,9的小正方形,如图所示,要求相邻的小正方形的颜色不同,标有3,5,7的颜色相同,问有多少种涂法.

查看答案和解析>>

同步练习册答案