精英家教网 > 高中数学 > 题目详情
10.平面直角坐标系xOy中,曲线C:(x-1)2+y2=1.直线l经过点P(m,0),且倾斜角为$\frac{π}{6}$.以O为极点,以x轴正半轴为极轴,建立坐标系.
(Ⅰ)写出曲线C的极坐标方程与直线l的参数方程;
(Ⅱ)若直线l与曲线C相交于A,B两点,且|PA|•|PB|=1,求实数m的值.

分析 (1)曲线C:(x-1)2+y2=1.展开为:x2+y2=2x,把$\left\{\begin{array}{l}{{ρ}^{2}={x}^{2}+{y}^{2}}\\{x=ρcosθ}\end{array}\right.$代入可得曲线C的极坐标方程.直线l的参数方程为:$\left\{\begin{array}{l}{x=m+\frac{\sqrt{3}}{2}t}\\{y=\frac{1}{2}t}\end{array}\right.$,(t为参数).
(2)设A,B两点对应的参数分别为t1,t2.把直线l的参数方程圆的方程可得:t2+($\sqrt{3}m-\sqrt{3}$)t+m2-2m=0,利用|PA|•|PB|=1,可得|m2-2m|=1,解得m即可得出.

解答 解:(1)曲线C:(x-1)2+y2=1.展开为:x2+y2=2x,可得ρ2=2ρcosθ,即曲线C的极坐标方程为ρ=2cosθ.
直线l的参数方程为:$\left\{\begin{array}{l}{x=m+\frac{\sqrt{3}}{2}t}\\{y=\frac{1}{2}t}\end{array}\right.$,(t为参数).
(2)设A,B两点对应的参数分别为t1,t2.把直线l的参数方程代入x2+y2=2x,可得:t2+($\sqrt{3}m-\sqrt{3}$)t+m2-2m=0,∴t1t2=m2-2m.
∵|PA|•|PB|=1,∴|m2-2m|=1,解得m=1或1±$\sqrt{2}$.

点评 本题考查了极坐标化为直角坐标方程的方法、直线与圆的相交弦长问题、直线参数方程的应用,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=x${\;}^{-{k}^{2}+k+2}$(k∈Z)且f(2)<f(3)
(1)求实数k的值;
(2)试判断是否存在正数p,使函数g(x)=1-pf(x)+(2p-1)x在区间[-1,2]上的值域为[-4,$\frac{17}{8}$],若存在,求出这个p的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.定义在R上的函数f(x)满足f(x)=-f(x+2),且当x∈(-1,1]时,f(x)=x2+2x.
(1)求当x∈(3,5]时,f(x)的解析式;
(2)判断f(x)在(3,5]上的增减性并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.一个正方体的平面展开图及该正方体的直观图如图所示,在正方体中,设BC的中点为M,GH的中点为N.
(1)请将字母F,G,H标记在正方体相应的顶点处(不需要说明理由);
(2)求证:直线MN∥平面BDH;
(3)求二面角B-DH-C的平面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若函数f(x)=x2-4x-m+4(-1≤x<4)有两个零点,则m的取值范围是(0,4).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在极坐标系中,直线θ=α与ρcos(θ-α)=1位置关系(  )
A.平行B.垂直C.相交但不垂直D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.一图形的投影是一条线段,这个图形不可能是(  )
A.线段B.直线C.D.梯形

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.正四棱柱ABCD-A1B1C1D1中,AB=$\sqrt{2}$,AA1=2,设四棱柱的外接球的球心为O,动点P在正方形ABCD的边长,射线OP交球O的表面点M,现点P从点A出发,沿着A→B→C→D→A运动一次,则点M经过的路径长为$\frac{4\sqrt{2}}{3}π$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知向量$\overrightarrow a$=(-1,3),$\overrightarrow b$=(1,k),若$\overrightarrow a$⊥$\overrightarrow b$,则实数k的值是(  )
A.3B.-3C.$\frac{1}{3}$D.$-\frac{1}{3}$

查看答案和解析>>

同步练习册答案