精英家教网 > 高中数学 > 题目详情
20.已知圆C:(x+2)2+(y-4)2=2,P是其上任一点,求P到直线l:x+y+2=0的最短距离和最长距离.

分析 求出圆的圆心坐标与半径,然后求出圆心到直线l:x+y+2=0的距离,圆上的点到直线l:x+y+2=0距离的最小值与最大值就是求出的距离加减半径即可.

解答 解:∵圆C:(x+2)2+(y-4)2=2的圆心(-2,4),半径为$\sqrt{2}$,
圆心(-2,4)到直线l:x+y+2=0的距离d=$\frac{4}{\sqrt{2}}$=2$\sqrt{2}$,
∴圆C:(x+2)2+(y-4)2=2上的点到直线l:x+y+2=0距离的最小值是2$\sqrt{2}$-r=$\sqrt{2}$,
最大值为:2$\sqrt{2}$+r=3$\sqrt{2}$.

点评 本题主要考查了直线与圆的位置关系的应用,解题的关键是把所求的距离转化为求圆心到直线的距离,要注意本题中满足圆上的点到直线的距离的最大值,最小值的求法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.若关于x的方程$\frac{1}{|x-1|+|2x+2|-4}$=a的解集为空集,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.(理科)如图所示的封闭曲线C由曲线C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0,y≥0)和曲线C2:y=nx2-1(y<0)组成,已知曲线C1过点($\sqrt{3}$,$\frac{1}{2}$),离心率为$\frac{\sqrt{3}}{2}$,点A、B分别为曲线C与x轴、y轴的一个交点.
(Ⅰ)求曲线C1和C2的方程;
(Ⅱ)若点Q是曲线C2上的任意点,求△QAB面积的最大值及点Q的坐标;
(Ⅲ)若点F为曲线C1的右焦点,直线l:y=kx+m与曲线C1相切于点M,且与直线x=$\frac{4\sqrt{3}}{3}$交于点N,求证:以MN为直径的圆过点F.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.过点P($\sqrt{3}$,1)的直线l与圆x2+y2=1有公共点,则直线l的倾斜角的取值范围是(  )
A.(0,$\frac{π}{6}$]B.(0,$\frac{π}{3}$]C.[0,$\frac{π}{6}$]D.[0,$\frac{π}{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知矩形ABCD的顶点C(4,4),点A在圆O:x2+y2=9(x≥0,y≥0)上移动,且AB,AD两边始终分别平行于x轴、y轴,求矩形ABCD面积S的最小值与最大值,以及相应的点A的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.直线x-ky+1=0与圆x2+y2=1的位置关系是(  )
A.相交B.相离C.相交或相切D.相切

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.正四棱锥S-ABCD的底面边长为2,高为1,E是边BC的中点,动点P在四棱锥表面上运动,并且总保持PE⊥AC,则动点P的轨迹的周长为$\sqrt{2}$+$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的长轴长为4,椭圆的离心率为$\frac{\sqrt{3}}{2}$.设点M是椭圆上不在坐标轴上的任意一点,过点M的直线分别交x轴、y轴于A、B两点上,且满足$\overrightarrow{AM}$=$\frac{1}{3}$$\overrightarrow{AB}$.
(1)求证:线段AB的长是一定值;
(2)若点N是点M关于原点的对称点,一过原点O且与直线AB平行的直线与椭圆交于P、Q两点(如图),求四边形MPNQ面积的最大值,并求出此时直线MN的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.直线y=m(m>0)与y=|logax|(a>0且a≠1)的图象交于A,B两点.分别过点A,B作垂直于x轴的直线交y=$\frac{k}{x}$(k>0)的图象于C,D两点,则直线CD的斜率(  )
A.与m有关B.与a有关C.与k有关D.等于-1

查看答案和解析>>

同步练习册答案