精英家教网 > 高中数学 > 题目详情
20.给定下列三个命题:
p1:函数y=ax+x(a>0,且a≠1)在R上为增函数;
p2:?a,b∈R,a2-ab+b2<0;
p3:cosα=cosβ成立的一个充分不必要条件是α=2kπ+β(k∈Z).
则下列命题中的真命题为(  )
A.p1∨p2B.p2∧p3C.p1∨¬p3D.¬p2∧p3

分析 p1:当0<a<1时,函数y=ax+x(a>0,且a≠1)在R上不是增函数,即可判断出真假;
p2:?a,b∈R,a2-ab+b2=$(a-\frac{1}{2}b)^{2}+(\frac{\sqrt{3}}{2}b)^{2}$≥0,不存在a,b∈R,a2-ab+b2<0,即可判断出真假;
p3:cosα=cosβ?α=2kπ±β(k∈Z),即可判断出真假.

解答 解:p1:当0<a<1时,函数y=ax+x(a>0,且a≠1)在R上不是增函数,是假命题;
p2:?a,b∈R,a2-ab+b2=$(a-\frac{1}{2}b)^{2}+(\frac{\sqrt{3}}{2}b)^{2}$≥0,因此不存在a,b∈R,a2-ab+b2<0,是假命题;
p3:cosα=cosβ?α=2kπ±β(k∈Z),因此cosα=cosβ成立的一个充分不必要条件是α=2kπ+β(k∈Z),是真命题.
因此p1∨p2,p2∧p3,p1∨¬p3是假命题;
¬p2∧p3是真命题.
故选:D.

点评 本题考查了简易逻辑的判定方法、实数的性质、指数函数的单调性、三角函数的性质,考查了推理能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知a,b,c,d都是实数,且a2+b2=m2,c2+d2=n2(m>0,n>0),求证|ac+bd|≤$\frac{{m}^{2}+{n}^{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知$\frac{2+\frac{1}{ta{n}^{2}θ}}{1+sinθ}$=1,求证:(1+sin θ )(2+cosθ )=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.计算:log43•log92=(  )
A.$\frac{1}{4}$B.$\frac{1}{6}$C.4D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知抛物线y2=2px(p>0)焦点为F,抛物线上横坐标为$\frac{1}{2}$的点到抛物线顶点的距离与其到准线的距离相等.
(Ⅰ)求抛物线的方程;
(Ⅱ)设过点P(6,0)的直线l与抛物线交于A,B两点,若以AB为直径的圆过点F,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设$\frac{1}{7}$≤k$≤\frac{1}{4}$,函数f(x)=|2x-1|-k的零点分别为x1,x2(x1<x2),函数g(x)=|2x-1|-$\frac{k}{2k+1}$的零点分别为x3,x4(x3<x4),则2${\;}^{({x}_{1}+{x}_{4})-({x}_{2}+{x}_{3})}$的最大值为(  )
A.$\frac{21}{25}$B.$\frac{4}{25}$C.$\frac{1}{16}$D.$\frac{15}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.给定下列三个命题:
p1:函数y=ax-a-x(a>0,且a≠1)在R上为增函数;
p2:?a,b∈R,a2-ab+b2<0;
p3:cosα=cosβ成立的一个充分不必要条件是α=2kπ+β(k∈Z)
则下列命题中真命题为(  )
A.p1∨p2B.p2∧p3C.¬p2∧p3D.p1∨¬p3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知抛物线y2=4x的焦点为F,准线为l,点P为抛物线上一点,且在第一象限,PA⊥l,垂足为A,若|PF|=4,则直线AF的倾斜角为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在(2x-$\frac{1}{x}$)3的二项展开式中,各项系数的和为(  )
A.27B.16C.8D.1

查看答案和解析>>

同步练习册答案