| A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{6}$ |
分析 利用抛物线的定义,|PF|=||PA|,设F在l上的射影为F′,依题意,可求得点P的坐标,从而可求得|AF′|,可求得点A的坐标,代入斜率公式,从而可求得直线AF的倾斜角.
解答
解:∵抛物线y2=4x的焦点为F,准线为l,
∴|PF|=||PA|,F(1,0),准线l的方程为:x=-1,
设F在l上的射影为F′,又PA⊥l,
设P(m,n),依|PF|=|PA|得,m+1=4,
解得m=3,n=2$\sqrt{3}$,
∵PA∥x轴,
∴点A的纵坐标为2$\sqrt{3}$,点A的坐标为(-1,2$\sqrt{3}$),
则直线AF的斜率$\frac{2\sqrt{3}-0}{-1-1}$=-$\sqrt{3}$,
则有直线AF的倾斜角等于$\frac{2π}{3}$.
故选:C.
点评 本题考查抛物线的定义、方程和简单性质,考查转化思想,考查解三角形的能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | p1∨p2 | B. | p2∧p3 | C. | p1∨¬p3 | D. | ¬p2∧p3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{6}}{2}$ | B. | $\sqrt{2}$ | C. | $\sqrt{3}$ | D. | $\sqrt{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com