精英家教网 > 高中数学 > 题目详情
19.已知a>b>0,椭圆C1方程为$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1,双曲线C2的方程为$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1,C1与C2离心率之积为$\frac{\sqrt{3}}{2}$,则C2的渐近线方程为(  )
A.$\sqrt{2}$x±y=0B.x±2y=0C.x±$\sqrt{2}$y=0D.2x±y=0

分析 运用椭圆和双曲线的离心率公式,可得a,b的方程,再由双曲线的渐近线方程,即可得到结论.

解答 解:圆C1方程为$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1的离心率为e1=$\frac{\sqrt{{a}^{2}-{b}^{2}}}{a}$,
双曲线C2的方程为$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1的离心率为e2=$\frac{\sqrt{{a}^{2}+{b}^{2}}}{a}$,
由题意可得$\frac{\sqrt{{a}^{2}-{b}^{2}}}{a}$•$\frac{\sqrt{{a}^{2}+{b}^{2}}}{a}$=$\frac{\sqrt{3}}{2}$,
可得a2=2b2,即为a=$\sqrt{2}$b,
即有双曲线的渐近线方程为y=±$\frac{b}{a}$x,
则为x$±\sqrt{2}$y=0,
故选C.

点评 本题考查椭圆和双曲线的方程和性质,主要考查离心率和渐近线方程的求法,考查运算能力,属于易错题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.$\root{4}{4}$÷$\root{4}{64}$=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知Sn为正项数列{an}的前n项和,Sn=$\frac{1}{2}$an2+$\frac{1}{2}$an,n∈N+,求{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知椭圆C的中心在原点,左焦点为F1(-1,0),右准线方程为:x=4
(1)求椭圆C的标准方程;
(2)若椭圆C上点N到定点M(m,0)(0<m<2)的距离的最小值为1,求m的值及点N的坐标;
(3)分别过椭圆C的四个顶点作坐标轴的垂线,围成如图所示的矩形,A、B是所围成的矩形在x轴上方的两个顶点.若P、Q是椭圆C上两个动点,直线OP、OQ与椭圆的另一交点分别为P1、Q1,且直线OP、OQ的斜率之积等于直线OA、OB的斜率之积,试探求四边形PQP1Q1的面积是否为定值,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=x-alnx,g(x)=-$\frac{1}{x}$,a∈R;
(1)设h(x)=f(x)+g(x),若h(x)在定义域内存在极值,求a的取值范围;
(2)设f′(x)是f(x)的导函数,若0<x1<x2,a≠0,f′(t)=$\frac{{f({x_2})-f({x_1})}}{{{x_2}-{x_1}}}$(x1<t<x2),求证:t<$\frac{{{x_1}+{x_2}}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若焦点在y轴上的椭圆$\frac{{x}^{2}}{a}$+$\frac{{y}^{2}}{4}$=1的长轴长是短轴的2倍,则a=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知椭圆的离心率为$\frac{\sqrt{3}}{2}$,且过点(2,0),则椭圆的标准方程$\frac{{x}^{2}}{4}+{y}^{2}=1$或$\frac{{y}^{2}}{16}+\frac{{x}^{2}}{4}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图所示,等腰梯形ABCD的底边AB在x轴上,顶点A与顶点B关于原点O对称,且底边AB和CD的长分别为6和2$\sqrt{6}$,高为3.
(Ⅰ)求等腰梯形ABCD的外接圆E的方程;
(Ⅱ)若点N的坐标为(5,2),点M在圆E上运动,
求线段MN的中点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图所示,椭圆长轴端点为点A、B、O为椭圆的中心,F为椭圆的上焦点,且$\overrightarrow{AF}•\overrightarrow{FB}=1,|\overrightarrow{OF}|=1$.
(1)求椭圆的标准方程;
(2)若四边形MPNQ的四个顶点都在椭圆上,对角线PQ,MN互相垂直并且它们的交点恰为点F,求四边形MPNQ面积的最大值和最小值.

查看答案和解析>>

同步练习册答案