精英家教网 > 高中数学 > 题目详情
11.已知椭圆的离心率为$\frac{\sqrt{3}}{2}$,且过点(2,0),则椭圆的标准方程$\frac{{x}^{2}}{4}+{y}^{2}=1$或$\frac{{y}^{2}}{16}+\frac{{x}^{2}}{4}=1$.

分析 分椭圆焦点在x轴、y轴两种情况讨论即可.

解答 解:∵椭圆的离心率为$\frac{\sqrt{3}}{2}$,
∴e=$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$,∴$\frac{{a}^{2}-{b}^{2}}{{a}^{2}}$=$\frac{3}{4}$,
∴$\frac{b}{a}$=$\frac{1}{2}$,即a=2b,
当椭圆焦点在x轴上时,设椭圆方程为$\frac{{x}^{2}}{{4b}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$,
代入点(2,0),可得b2=1,
即椭圆方程为$\frac{{x}^{2}}{4}+{y}^{2}=1$;
当椭圆焦点在y轴上时,设椭圆方程为$\frac{{y}^{2}}{4{b}^{2}}+\frac{{x}^{2}}{{b}^{2}}=1$,
代入点(2,0),可得b2=4,
即椭圆方程为$\frac{{y}^{2}}{16}+\frac{{x}^{2}}{4}=1$;
综上可得,椭圆方程为$\frac{{x}^{2}}{4}+{y}^{2}=1$或$\frac{{y}^{2}}{16}+\frac{{x}^{2}}{4}=1$.

点评 本题考查求椭圆的方程,考查分类讨论的思想,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$$-\frac{{y}^{2}}{2}$=1的一个焦点与抛物线y2=8x的焦点重合,则该双曲线的实轴长等于2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.椭圆E:$\frac{x^2}{5}$+$\frac{y^2}{4}$=1的右焦点F,直线l与曲线x2+y2=4(x>0)相切,且交椭圆E于A,B两点,记△FAB的周长为m,则实数m的所有可能取值所成的集合为{2$\sqrt{5}$}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知a>b>0,椭圆C1方程为$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1,双曲线C2的方程为$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1,C1与C2离心率之积为$\frac{\sqrt{3}}{2}$,则C2的渐近线方程为(  )
A.$\sqrt{2}$x±y=0B.x±2y=0C.x±$\sqrt{2}$y=0D.2x±y=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知a>b>0,椭圆C1的方程为$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1,双曲线C2的方程为$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1,C1与C2的离心率之积为$\frac{{\sqrt{3}}}{2}$,则C2的渐近线方程为(  )
A.$\sqrt{2}$x±y=0B.x±$\sqrt{2}$y=0C.2x±y=0D.x±2y=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为e=$\frac{1}{2}$,右焦点为F(c,0),方程ax2+bx-c=0的两个实根分别为x1和x2,则点P(x1,x2)(  )
A.必在圆x2+y2=2上B.必在圆x2+y2=2外
C.必在圆x2+y2=2内D.以上三种情形都有可能

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如果椭圆$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{9}$=1上一点P到它的左焦点的距离是2,那么点P到右焦点的距离为(  )
A.2B.4C.6D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.数列 {an}中 a1=$\frac{1}{2}$,前n项和 Sn=n2an-2n(n-1),n∈N*
(I)证明数列 {$\frac{n+1}{n}$Sn}是等差数列;
(Ⅱ)设 bn=$\frac{1}{{{n^2}(2n-1)}}$Sn,数列 {bn}的前 n项和为 Tn,试证明:Tn<1•

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的长轴长是4,点A为椭圆的右顶点,点B为椭圆上一点,且△OAB是等腰直角三角形(点O为坐标原点).
(Ⅰ)求椭圆C的方程;
(Ⅱ)过椭圆C上异于其顶点的任意一点P,作圆x2+y2=$\frac{4}{3}$的两条切线,切点分别为M,N,若直线MN与x,y轴的交点分别是(m,0),(0,n),证明:$\frac{1}{m^2}$+$\frac{3}{n^2}$是定值.

查看答案和解析>>

同步练习册答案