精英家教网 > 高中数学 > 题目详情
12.抛物线x2=2y上的点到直线x-2y-4=0的距离的最小值是(  )
A.$\frac{\sqrt{5}}{4}$B.$\frac{2\sqrt{5}}{5}$C.$\frac{3\sqrt{5}}{4}$D.$\frac{3\sqrt{5}}{5}$

分析 若使P到直线距离最小,则以点P为切点的直线与直线x-2y-4=0平行,从而求出点P的坐标,从而求最小值.

解答 解:设抛物线的一条切线的切点为P(a,b),
则以点P为切点的直线与直线x-2y-4=0平行时,P到直线距离取得最小值,
由y′=x=$\frac{1}{2}$可得点P($\frac{1}{2}$,$\frac{1}{8}$),
此时P到直线距离d=$\frac{|\frac{1}{2}-\frac{1}{4}-4|}{\sqrt{5}}$=$\frac{3\sqrt{5}}{4}$,
故P到直线距离最小值为$\frac{3\sqrt{5}}{4}$,
故选:C.

点评 本题考查了圆锥曲线中的最值问题,同时考查了数形结合的思想及转化的思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知不等式组$\left\{\begin{array}{l}{2x-y+4≥0}\\{x+y-3≤0}\\{y≥0}\end{array}\right.$,构成平面区域Ω(其中x,y是变量),则目标函数z=3x+6y的最小值为(  )
A.-3B.3C.-6D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.椭圆$\frac{x^2}{4}+{y^2}=1$的焦点为F1,F2,点M在椭圆上,且M在以F1F2为直径的圆上,则M到y轴的距离为(  )
A.$\frac{{2\sqrt{3}}}{3}$B.$\frac{{2\sqrt{6}}}{3}$C.$\frac{{\sqrt{3}}}{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在△ABC中,sin(C-A)=1,$sinB=\frac{1}{3}$,则sinA=$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知p:$\frac{3}{x-1}$≤1,q:x2+x≤a2-a(a<0),若¬q成立的一个充分而不必要条件是¬p,则实数a的取值范围为(-1,0).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知数列满足an=3an-1+2,且a1=2,则an=3n-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.正方体ABCD-A1B1C1D1中,棱长为1,点E,F,G分别是线段AB,BC,DD1的中点,求作过E,F,G三点的截面,并求截面的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.以(1,-2)为圆心且过原点的圆的方程为(x-1)2+(y+2)2=5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.过点(1,-1)作函数f(x)=x3-x的切线,求切线方程.

查看答案和解析>>

同步练习册答案