精英家教网 > 高中数学 > 题目详情
20.在△ABC中,sin(C-A)=1,$sinB=\frac{1}{3}$,则sinA=$\frac{\sqrt{3}}{3}$.

分析 利用sin(C-A)=1,求出A,C关系,通过三角形内角和结合sinB=$\frac{1}{3}$,求出sinA的值.

解答 解:△ABC中,sin(C-A)=1,$sinB=\frac{1}{3}$,则sinA
因为sin(C-A)=1,所以C-A=$\frac{π}{2}$,且C+A=π-B,
∴A=$\frac{π}{4}$-$\frac{B}{2}$,sinA=sin($\frac{π}{4}$-$\frac{B}{2}$)=$\frac{\sqrt{2}}{2}$cos$\frac{B}{2}$-$\frac{\sqrt{2}}{2}$sin$\frac{B}{2}$ 
∴sin2A=$\frac{1-sinB}{2}$=$\frac{1}{3}$,∴sinA=$\frac{\sqrt{3}}{3}$,
故答案为:$\frac{\sqrt{3}}{3}$.

点评 本小题主要考查三角恒等变换、正弦定理、解三角形等有关知识,考查运算求解能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.下列集合中与集合{x|x=2k+1,k∈N+}不相等的是(  )
A.{x|x=2k-1,k∈N+}B.{x|x=4k±1,k∈N+}
C.{x|x=2k-1,k∈N且k>1}D.{x|x=2k+3,k∈N}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.(理)已知数列{an}、{bn}的通项公式分布为an=(-1)n-1a-1,bn=(-1)n$\frac{1-2n}{2n+1}$,切对于一切的正整数n,恒有an<bn成立,则实数a的取值范围是$[0,\frac{4}{3})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知f(x)是定义在R上的偶函数,对x∈R都有f(x+6)=f(x)+f(3)成立,若f(0)=1,则f(2016)的值为  (  )
A.0B.1C.2015D.2016

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.函数$y={(\frac{1}{2})^{{x^2}-x-\frac{1}{4}}}$的值域是(0,$\sqrt{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知递增等比数列{an},满足a1=1,且a2a4-2a3a5+a4a6=36.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=log3an+$\frac{1}{2}$,求数列{an2•bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.抛物线x2=2y上的点到直线x-2y-4=0的距离的最小值是(  )
A.$\frac{\sqrt{5}}{4}$B.$\frac{2\sqrt{5}}{5}$C.$\frac{3\sqrt{5}}{4}$D.$\frac{3\sqrt{5}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图1,∠ACB=45°,BC=3,过动点A作AD⊥BC,垂足D在线段BC上且异于点B,连接AB,沿AD将△ABD折起,使∠BDC=90°(如图2所示).记 BD=x,V(x)为三棱锥A-BCD的体积.

(1)求V(x)的表达式;
(2)设函数$f(x)=\frac{3}{x}V(x)+2x$,当x为何值时,f(x)取得最小值,并求出该最小值;
(3)当f(x)取得最小值时,设点E,M分别为棱BC,AC的中点,试在棱CD上确定一点N,使得EN⊥BM,并求EN与平面BMN所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知全集U=R,集合A={x|1<x≤8},B={x|2<x<9},C={x|x≥a}
(1)求A∩B,(∁A)∩B;
(2)如果A∩C≠∅,求a的取值范围.

查看答案和解析>>

同步练习册答案