精英家教网 > 高中数学 > 题目详情
2.已知不等式组$\left\{\begin{array}{l}{2x-y+4≥0}\\{x+y-3≤0}\\{y≥0}\end{array}\right.$,构成平面区域Ω(其中x,y是变量),则目标函数z=3x+6y的最小值为(  )
A.-3B.3C.-6D.6

分析 作出不等式组表示的平面区域Ω,变形目标函数并平移直线y=$-\frac{1}{2}$x可得结论.

解答 解:作出不等式组$\left\{\begin{array}{l}{2x-y+4≥0}\\{x+y-3≤0}\\{y≥0}\end{array}\right.$表示的平面区域Ω(如图阴影部分所示),
变形目标函数可得y=$-\frac{1}{2}$x+$\frac{1}{6}$z,平移直线y=$-\frac{1}{2}$x可知,
当直线经过点C(-2,0)时,直线的截距最小,z取最小值-6
故选:C.

点评 本题考查简单线性规划,数形结合是解决问题的关键,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.某平面区域为坐标平面上由点A(0,30),B(18,27),C(20,0),D(2,3)所围成的平行四边形及其内部.已知目标函数z=ax+by(a,b∈R)在D点有最小值48,则此目标函数的最大值为432.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,边长相等的两个正方形ABCD和ABEF所在平面相交于AB,M∈BD,N∈AE且BM=EN≠BD.求证:MN⊥AB.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列集合中与集合{x|x=2k+1,k∈N+}不相等的是(  )
A.{x|x=2k-1,k∈N+}B.{x|x=4k±1,k∈N+}
C.{x|x=2k-1,k∈N且k>1}D.{x|x=2k+3,k∈N}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.数列{an}满足a1=1,对任意的n∈N*都有an+1=a1+an+n,则$\frac{1}{a_1}+\frac{1}{a_2}+…+\frac{1}{{{a_{2016}}}}$=(  )
A.$\frac{2015}{2016}$B.$\frac{2016}{2017}$C.$\frac{4032}{2017}$D.$\frac{4034}{2017}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知A(-1,1)、B(x-1,2x),若向量$\overrightarrow{OA}$与$\overrightarrow{OB}$(O为坐标原点)的夹角为锐角,则实数x的取值范围是(  )
A.(-1,$\frac{1}{3}$)∪($\frac{1}{3}$,+∞)B.(-1,+∞)C.(-1,3)∪(3,+∞)D.(-∞,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若△ABC的面积S△ABC∈[$\frac{\sqrt{3}}{2}$,$\frac{3\sqrt{3}}{2}$],且$\overrightarrow{AB}$•$\overrightarrow{BC}$=3,则向量$\overrightarrow{BA}$与$\overrightarrow{BC}$夹角的取值范围是(  )
A.[$\frac{π}{3}$,$\frac{π}{2}$]B.[$\frac{3π}{4}$,$\frac{5π}{6}$]C.[$\frac{2π}{3}$,π)D.[$\frac{2π}{3}$,$\frac{5π}{6}$]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.(理)已知数列{an}、{bn}的通项公式分布为an=(-1)n-1a-1,bn=(-1)n$\frac{1-2n}{2n+1}$,切对于一切的正整数n,恒有an<bn成立,则实数a的取值范围是$[0,\frac{4}{3})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.抛物线x2=2y上的点到直线x-2y-4=0的距离的最小值是(  )
A.$\frac{\sqrt{5}}{4}$B.$\frac{2\sqrt{5}}{5}$C.$\frac{3\sqrt{5}}{4}$D.$\frac{3\sqrt{5}}{5}$

查看答案和解析>>

同步练习册答案