14£®Èô¡÷ABCµÄÃæ»ýS¡÷ABC¡Ê[$\frac{\sqrt{3}}{2}$£¬$\frac{3\sqrt{3}}{2}$]£¬ÇÒ$\overrightarrow{AB}$•$\overrightarrow{BC}$=3£¬ÔòÏòÁ¿$\overrightarrow{BA}$Óë$\overrightarrow{BC}$¼Ð½ÇµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®[$\frac{¦Ð}{3}$£¬$\frac{¦Ð}{2}$]B£®[$\frac{3¦Ð}{4}$£¬$\frac{5¦Ð}{6}$]C£®[$\frac{2¦Ð}{3}$£¬¦Ð£©D£®[$\frac{2¦Ð}{3}$£¬$\frac{5¦Ð}{6}$]

·ÖÎö ÀûÓÃÏòÁ¿µÄÊýÁ¿»ý½áºÏÈý½ÇÐεÄÃæ»ý¹«Ê½£¬Áгö²»µÈʽÇó³öÁ½¸öÏòÁ¿¼Ð½ÇµÄ·¶Î§£®

½â´ð ½â£º¡ß¡÷ABCµÄÃæ»ýS¡÷ABC¡Ê[$\frac{\sqrt{3}}{2}$£¬$\frac{3\sqrt{3}}{2}$]£¬
¡àS¡÷ABC=$\frac{1}{2}\left|\overrightarrow{AB}\right|\left|\overrightarrow{BC}\right|sinB$=$\frac{1}{2}$•$\frac{\overrightarrow{AB}•\overrightarrow{BC}}{cos£¨¦Ð-B£©}$•sinB=$-\frac{3tanB}{2}$¡Ê[$\frac{\sqrt{3}}{2}$£¬$\frac{3\sqrt{3}}{2}$]£¬
¿ÉµÃtanB¡Ê$[-\sqrt{3}£¬-\frac{\sqrt{3}}{3}]$£¬¡àB¡Ê[$\frac{2¦Ð}{3}$£¬$\frac{5¦Ð}{6}$]£®
¹ÊÑ¡£ºD£®

µãÆÀ ±¾Ì⿼²éÏòÁ¿µÄÊýÁ¿»ý¹«Ê½¡¢¿¼²éÈý½ÇÐεÄÃæ»ý¹«Ê½¡¢¿¼²é½âÈý½Ç²»µÈʽµÄÄÜÁ¦£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÒÑÖªÖ±Ïßl1¾­¹ýµã£¨0£¬1£©£¬Ö±Ïßl2¹ýµã£¨5£¬0£©£¬ÇÒl1¡Îl2£®
£¨1£©Èôl1Óël2¾àÀëΪ5£¬ÇóÁ½Ö±Ïߵķ½³Ì£»
£¨2£©Èôl1Óël2Ö®¼äµÄ¾àÀë×î´ó£¬Çó×î´ó¾àÀ룬²¢Çó´ËʱÁ½Ö±Ïߵķ½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÒÑÖªF1¡¢F2ÊÇÍÖÔ²$\frac{x^2}{100}+\frac{y^2}{64}=1$µÄÁ½¸ö½¹µã£¬PÊÇÍÖÔ²ÉÏÈÎÒâÒ»µã£®
£¨1£©Èô¡ÏF1PF2=$\frac{¦Ð}{3}$£¬Çó¡÷F1PF2µÄÃæ»ý£»
£¨2£©Çó$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$µÄ×î´óÖµºÍ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®ÒÑÖª²»µÈʽ×é$\left\{\begin{array}{l}{2x-y+4¡Ý0}\\{x+y-3¡Ü0}\\{y¡Ý0}\end{array}\right.$£¬¹¹³ÉÆ½ÃæÇøÓò¦¸£¨ÆäÖÐx£¬yÊDZäÁ¿£©£¬ÔòÄ¿±êº¯Êýz=3x+6yµÄ×îСֵΪ£¨¡¡¡¡£©
A£®-3B£®3C£®-6D£®6

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®Èçͼ£¬¶¯µãAÔÚº¯Êýy=$\frac{1}{x}$£¨x£¼0£©µÄͼÏóÉÏ£¬¶¯µãBÔÚº¯Êýy=$\frac{2}{x}$£¨x£¾0£©µÄͼÏóÉÏ£¬¹ýµãA¡¢B·Ö±ðÏòxÖá¡¢yÖá×÷´¹Ïߣ¬´¹×ã·Ö±ðΪA1¡¢A2¡¢B1¡¢B2£¬Èô|A1B1|=4£¬Ôò|A2B2|µÄ×îСֵΪ$\frac{3+2\sqrt{2}}{4}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÒÑÖªÔÚÖ±½Ç×ø±êϵxOyÖУ¬Ô²×¶ÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=2cos¦È\\ y=\sqrt{3}sin¦È\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£¬¶¨µã$A£¨{0£¬-\sqrt{3}}£©$£¬F1£¬F2ÊÇÔ²×¶ÇúÏßCµÄ×ó¡¢ÓÒ½¹µã£®
£¨1£©ÒÔ×ø±êÔ­µãΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬Çó¾­¹ýµãF1ÇÒÆ½ÐÐÓÚÖ±ÏßAF2µÄÖ±ÏßlµÄ¼«×ø±ê·½³Ì£»
£¨2£©É裨1£©ÖÐÖ±ÏßlÓëÔ²×¶ÇúÏßC½»ÓÚM£¬NÁ½µã£¬Çó$\overrightarrow{{F}_{1}M}•\overrightarrow{{F}_{1}N}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®ÏÂÁи÷×麯ÊýÖУ¬±íʾͬһ¸öº¯ÊýµÄÊÇ£¨¡¡¡¡£©
A£®y=1£¬y=$\frac{x}{x}$B£®y=x£¬y=$\root{3}{{x}^{3}}$
C£®y=$\sqrt{x-1}$¡Á$\sqrt{x+1}$£¬y=$\sqrt{{x}^{2}-1}$D£®y=|x|£¬$y={£¨{\sqrt{x}}£©^2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®ÍÖÔ²$\frac{x^2}{4}+{y^2}=1$µÄ½¹µãΪF1£¬F2£¬µãMÔÚÍÖÔ²ÉÏ£¬ÇÒMÔÚÒÔF1F2Ϊֱ¾¶µÄÔ²ÉÏ£¬ÔòMµ½yÖáµÄ¾àÀëΪ£¨¡¡¡¡£©
A£®$\frac{{2\sqrt{3}}}{3}$B£®$\frac{{2\sqrt{6}}}{3}$C£®$\frac{{\sqrt{3}}}{3}$D£®$\sqrt{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®Õý·½ÌåABCD-A1B1C1D1ÖУ¬ÀⳤΪ1£¬µãE£¬F£¬G·Ö±ðÊÇÏß¶ÎAB£¬BC£¬DD1µÄÖе㣬Çó×÷¹ýE£¬F£¬GÈýµãµÄ½ØÃ棬²¢Çó½ØÃæµÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸