19£®ÒÑÖªÔÚÖ±½Ç×ø±êϵxOyÖУ¬Ô²×¶ÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=2cos¦È\\ y=\sqrt{3}sin¦È\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£¬¶¨µã$A£¨{0£¬-\sqrt{3}}£©$£¬F1£¬F2ÊÇÔ²×¶ÇúÏßCµÄ×ó¡¢ÓÒ½¹µã£®
£¨1£©ÒÔ×ø±êÔ­µãΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬Çó¾­¹ýµãF1ÇÒÆ½ÐÐÓÚÖ±ÏßAF2µÄÖ±ÏßlµÄ¼«×ø±ê·½³Ì£»
£¨2£©É裨1£©ÖÐÖ±ÏßlÓëÔ²×¶ÇúÏßC½»ÓÚM£¬NÁ½µã£¬Çó$\overrightarrow{{F}_{1}M}•\overrightarrow{{F}_{1}N}$£®

·ÖÎö £¨1£©½«ÇúÏߵIJÎÊý·½³Ì»¯ÎªÆÕͨ·½³Ì£¬ÓÉÍÖÔ²µÄ±ê×¼·½³ÌÈ·¶¨Ïà¹ØµãµÄ×ø±ê£¬ÔÙÓɵãбʽд³öÖ±ÏßlµÄÖ±½Ç×ø±ê·½³Ì£¬×îºóת»¯Îª¼«×ø±ê·½³Ì¼´¿É
£¨2£©½«Ö±Ïß·½³ÌÓëÍÖÔ²±ê×¼·½³ÌÁªÁ¢£¬ÀûÓÃΤ´ï¶¨ÀíºÍÄÜÇó³ö$\overrightarrow{{F}_{1}M}•\overrightarrow{{F}_{1}N}$£®

½â´ð ½â£º£¨1£©¡ßÔ²×¶ÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=2cos¦È\\ y=\sqrt{3}sin¦È\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£¬
¡àÆÕͨ·½³ÌΪC£º$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1£¬¡àA£¨0£¬-$\sqrt{3}$£©£¬F2£¨1£¬0£©£¬F1£¨-1£¬0£©
¡àkAF2=$\sqrt{3}$£¬l£ºy=$\sqrt{3}$£¨x+1£©
¡àÖ±Ïßl¼«×ø±ê·½³ÌΪ£º¦Ñsin¦È=$\sqrt{3}$¦Ñcos¦È+$\sqrt{3}$£¬
¼´2¦Ñsin£¨¦È-$\frac{¦Ð}{3}$£©=$\sqrt{3}$£®
£¨2£©£¨2½«Ö±Ïßy=$\sqrt{3}$£¨x+1£©´úÈëÍÖÔ²±ê×¼·½³Ì$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1£¬µÃ5x2+8x=0£¬
ÉèM£¨x1£¬y1£¬N£¨x2£¬y2£¬Ôòx1+x2=-$\frac{8}{5}$£¬x1x2=0£¬
$\overrightarrow{{F}_{1}M}$=£¨x1+1£¬y1£©£¬$\overrightarrow{{F}_{2}M}$=£¨x2+1£¬y2£©£¬
¡à$\overrightarrow{{F}_{1}M}•\overrightarrow{{F}_{1}N}$=£¨1+$\sqrt{3}$£©£¨x1+1£©£¨x2+1£©=£¨1+$\sqrt{3}$£©[x1x2+£¨x1+x2£©+1]
=£¨1+$\sqrt{3}$£©]£¨1-$\frac{8}{5}$£©
=-$\frac{3}{5}$-$\frac{3\sqrt{3}}{5}$£®

µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²µÄ²ÎÊý·½³Ì£¬±ê×¼·½³Ì¼°Æä»¥»¯£¬Ö±ÏßµÄÖ±½Ç×ø±ê·½³Ì¼°ÓëÆä¼«×ø±ê·½³ÌµÄ»¥»¯£¬Ö±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬ÇóÏཻÏÒ³¤µÄ·½·¨£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÓÃ0£¬1£¬2£¬3£¬4£¬5Áù¸öÊý×ÖÅųÉûÓÐÖØ¸´Êý×ÖµÄ6λÊý£¬·Ö±ðÂú×ãÏÂÁÐÌõ¼þµÄÊýÓжàÉÙ¸ö£¿
£¨1£©0²»ÔÚ¸öλ£»
£¨2£©1Óë2ÏàÁÚ£»
£¨3£©1Óë2²»ÏàÁÚ£»
£¨4£©0Óë1Ö®¼äÇ¡ÓÐÁ½¸öÊý£»
£¨5£©1²»ÔÚ¸öλ£»
£¨6£©Å¼ÊýÊý×Ö´Ó×óÏòÓÒ´ÓСµ½´óÅÅÁУ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®ÏÂÁм¯ºÏÖÐÓ뼯ºÏ{x|x=2k+1£¬k¡ÊN+}²»ÏàµÈµÄÊÇ£¨¡¡¡¡£©
A£®{x|x=2k-1£¬k¡ÊN+}B£®{x|x=4k¡À1£¬k¡ÊN+}
C£®{x|x=2k-1£¬k¡ÊNÇÒk£¾1}D£®{x|x=2k+3£¬k¡ÊN}

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®ÒÑÖªA£¨-1£¬1£©¡¢B£¨x-1£¬2x£©£¬ÈôÏòÁ¿$\overrightarrow{OA}$Óë$\overrightarrow{OB}$£¨OÎª×ø±êÔ­µã£©µÄ¼Ð½ÇΪÈñ½Ç£¬ÔòʵÊýxµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®£¨-1£¬$\frac{1}{3}$£©¡È£¨$\frac{1}{3}$£¬+¡Þ£©B£®£¨-1£¬+¡Þ£©C£®£¨-1£¬3£©¡È£¨3£¬+¡Þ£©D£®£¨-¡Þ£¬-1£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®Èô¡÷ABCµÄÃæ»ýS¡÷ABC¡Ê[$\frac{\sqrt{3}}{2}$£¬$\frac{3\sqrt{3}}{2}$]£¬ÇÒ$\overrightarrow{AB}$•$\overrightarrow{BC}$=3£¬ÔòÏòÁ¿$\overrightarrow{BA}$Óë$\overrightarrow{BC}$¼Ð½ÇµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®[$\frac{¦Ð}{3}$£¬$\frac{¦Ð}{2}$]B£®[$\frac{3¦Ð}{4}$£¬$\frac{5¦Ð}{6}$]C£®[$\frac{2¦Ð}{3}$£¬¦Ð£©D£®[$\frac{2¦Ð}{3}$£¬$\frac{5¦Ð}{6}$]

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®¸ø³öÏÂÁÐÃüÌ⣺
¢ÙÃüÌâ¡°?x¡Êk£¬cosx£¾0¡±µÄ·ñ¶¨ÊÇ¡°?x¡ÊR£¬cosx¡Ü0¡±
¢Úº¯Êý$f£¨x£©=\frac{{{a^x}-1}}{{{a^x}+1}}£¨a£¾0$ÇÒa¡Ù1£©ÔÚRÉÏÊǵ¥µ÷º¯Êý
¢ÛÉèf£¨x£©ÊÇRÉϵÄÈÎÒ⺯Êý£¬Ôòf£¨x£©|f£¨-x£©|ÊÇÆæº¯Êý£¬f£¨x£©+f£¨-x£©ÊÇżº¯Êý
¢Ü¶¨ÒåÔÚRÉϵĺ¯Êýf£¨x£©¶ÔÈÎÒâxµÄ¶¼ÓÐ$f£¨x-2£©=-\frac{4}{f£¨x£©}$£¬Ôòf£¨x£©ÎªÖÜÆÚº¯Êý
ÆäÖÐÕæÃüÌâµÄÊǢ٢ڢܣ¨°ÑËùÓÐÕæÃüÌâµÄÐòºÅ¶¼ÌîÉÏ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®£¨Àí£©ÒÑÖªÊýÁÐ{an}¡¢{bn}µÄͨÏʽ·Ö²¼Îªan=£¨-1£©n-1a-1£¬bn=£¨-1£©n$\frac{1-2n}{2n+1}$£¬ÇжÔÓÚÒ»ÇеÄÕýÕûÊýn£¬ºãÓÐan£¼bn³ÉÁ¢£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ$[0£¬\frac{4}{3}£©$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®ÒÑÖªf£¨x£©ÊǶ¨ÒåÔÚRÉϵÄżº¯Êý£¬¶Ôx¡ÊR¶¼ÓÐf£¨x+6£©=f£¨x£©+f£¨3£©³ÉÁ¢£¬Èôf£¨0£©=1£¬Ôòf£¨2016£©µÄֵΪ  £¨¡¡¡¡£©
A£®0B£®1C£®2015D£®2016

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®Èçͼ1£¬¡ÏACB=45¡ã£¬BC=3£¬¹ý¶¯µãA×÷AD¡ÍBC£¬´¹×ãDÔÚÏß¶ÎBCÉÏÇÒÒìÓÚµãB£¬Á¬½ÓAB£¬ÑØAD½«¡÷ABDÕÛÆð£¬Ê¹¡ÏBDC=90¡ã£¨Èçͼ2Ëùʾ£©£®¼Ç BD=x£¬V£¨x£©ÎªÈýÀâ×¶A-BCDµÄÌå»ý£®

£¨1£©ÇóV£¨x£©µÄ±í´ïʽ£»
£¨2£©É躯Êý$f£¨x£©=\frac{3}{x}V£¨x£©+2x$£¬µ±xΪºÎֵʱ£¬f£¨x£©È¡µÃ×îСֵ£¬²¢Çó³ö¸Ã×îСֵ£»
£¨3£©µ±f£¨x£©È¡µÃ×îСֵʱ£¬ÉèµãE£¬M·Ö±ðΪÀâBC£¬ACµÄÖе㣬ÊÔÔÚÀâCDÉÏÈ·¶¨Ò»µãN£¬Ê¹µÃEN¡ÍBM£¬²¢ÇóENÓëÆ½ÃæBMNËù³É½ÇµÄ´óС£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸