精英家教网 > 高中数学 > 题目详情
3.己知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)与抛物线y2=2px(p>0)共焦点F2,抛物线上的点M到y轴的距离等于|MF2|-1,且椭圆与抛物线的交点Q满足|QF2|=$\frac{5}{2}$.
(I)求抛物线的方程和椭圆的方程;
(II)过抛物线上的点P作抛物线的切线y=kx+m交椭圆于A,B两点,设线段AB的中点为C(x0,y0),求x0的取值范围.

分析 (I)利用抛物线上的点M到y轴的距离等于|MF2|-1,通过抛物线的定义,转化解得p=2,得到抛物线的方程,通过椭圆的右焦点F2(1,0),左焦点F1(-1,0),由|QF2|=$\frac{5}{2}$,解得Q($\frac{3}{2}$,$±\sqrt{6}$)利用椭圆的定义求出a,b.求解椭圆的方程.
(II)显然k≠0,m≠0,由$\left\{\begin{array}{l}{y=kx+m}\\{{y}^{2}=4x}\end{array}\right.$消去x,推出km=1,由$\left\{\begin{array}{l}{y=kx+m}\\{\frac{{x}^{2}}{9}+\frac{{y}^{2}}{8}=1}\end{array}\right.$消去y,推出9k2-m2+8>0,求出0<m2<9,设A(x1,y1),B(x2,y2),结合韦达定理求解x0的取值范围.

解答 解:(I)∵抛物线上的点M到y轴的距离等于|MF2|-1,
∴点M到直线x=-1的距离等于点M到焦点F2的距离,----------------(1分)
得x=-1是抛物线y2=2px的准线,即-$\frac{p}{2}$=-1,解得p=2,∴抛物线的方程为y2=4x;-----------------(3分)
可知椭圆的右焦点F2(1,0),左焦点F1(-1,0),由|QF2|=$\frac{5}{2}$,得xQ+1=$\frac{5}{2}$,又yQ2=4xQ,解得Q($\frac{3}{2}$,$±\sqrt{6}$),-------(4分)
由椭圆的定义得2a=|QF1|+|QF2|=$\frac{7}{2}$+$\frac{5}{2}$=6,----------------------(5分)
∴a=3,又c=1,得b2=a2-c2=8,∴椭圆的方程为$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{8}=1$.-------------------------(6分)
(II)显然k≠0,m≠0,由$\left\{\begin{array}{l}{y=kx+m}\\{{y}^{2}=4x}\end{array}\right.$消去x,得ky2-4y+4m=0,
由题意知△=16-16km=0,得km=1,--------------------------(7分)
由$\left\{\begin{array}{l}{y=kx+m}\\{\frac{{x}^{2}}{9}+\frac{{y}^{2}}{8}=1}\end{array}\right.$消去y,得(9k2+8)x2+18kmx+9m2-72=0,
其中△2=(18km)2-4(9k2+8)(9m2-72)>0,
化简得9k2-m2+8>0,-----------------------------------------(9分
又k=$\frac{1}{m}$,得m4-8m2-9<0,解得0<m2<9,--------------------(10分)
设A(x1,y1),B(x2,y2),则x0=$\frac{{x}_{1}+{x}_{2}}{2}$=-$\frac{9}{9{k}^{2}+8}$<0,
由k2=$\frac{1}{{m}^{2}}$>$\frac{1}{9}$,得x0>-1,∴x0的取值范围是(-1,0).--------------(12分)

点评 本题考查椭圆以及抛物线的简单性质的应用,范围问题的处理方法,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.按下列要求分配6本不同的书,各有多少种不同的分配方式.
(1)平均分给甲、乙、丙三人,每人2本.
(2)甲、乙、丙三人中,一人得1本,一人得2本,一人得3本.(用数字回答)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.命题“?x∈[0,+∞),sinx+x≥0”的否定是(  )
A.?x0∈(-∞,0),sinx0+x0<0B.?x∈(-∞,0),sinx+x≥0
C.?x0∈[0,+∞),sinx0+x0<0D.?x0∈[0,+∞),sinx0+x0≥0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设非等腰△ABC的内角A、B、C所对边的长分别为a、b、c,且A、B、C成等差数列,用分析法证明:$\frac{1}{a-b}+\frac{1}{c-b}$=$\frac{3}{a-b+c}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=ax-ln(x+1).
(Ⅰ)当a=1时,求f(x)的极值;
(Ⅱ)当x≥0时,f(x)≥sinx恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.AD∥BC,∠ABC=∠PAD=90°,侧面PAD⊥底面ABCD.若 PA=AB=BC=$\frac{1}{2}$AD.
(Ⅰ)求证:CD⊥平面PAC;
(Ⅱ)侧棱PA上是否存在点E,使得BE∥平面PCD?若存在,指出点E的位置并证明,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.小明有中国古代四大名著:《三国演义》,《西游记》,《水浒传》,《红楼梦》各一本,他要将这四本书全部借给三位同学,每位同学至少一本,但《西游记》,《红楼梦》这两本书不能借给同一人,则不同的借法有(  )
A.36种B.30种C.24种D.12种

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在数列{an}中,a1=1,(n2+n)(an+1-an)=2,则a20=$\frac{9}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=ax2+bx+c(a,b,c∈R),若存在实数a∈[1,2],对任意x∈[1,2],都有f(x)≤1,则7b+5c的最大值是-6.

查看答案和解析>>

同步练习册答案