精英家教网 > 高中数学 > 题目详情
13.已知函数f(x)=ax2+bx+c(a,b,c∈R),若存在实数a∈[1,2],对任意x∈[1,2],都有f(x)≤1,则7b+5c的最大值是-6.

分析 对任意x∈[1,2],都有f(x)≤1,可得f(1)≤1且f(2)≤1,存在实数a∈[1,2],可得b+c≤0,2b+c≤-3,利用待定系数法,即可得出结论.

解答 解:∵对任意x∈[1,2],都有f(x)≤1,
∴f(1)≤1且f(2)≤1,
∵存在实数a∈[1,2],∴可得b+c≤0,2b+c≤-3,
令7b+5c=m(b+c)+n(2b+c),则$\left\{\begin{array}{l}{m+2n=7}\\{m+n=5}\end{array}\right.$,∴m=3,n=2,
∴7b+5c=3(b+c)+2(2b+c),
∴7b+5c≤-6,
∴7b+5c的最大值是-6,
故答案为-6.

点评 本题考查二次函数的性质,考查不等式知识的运用,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.己知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)与抛物线y2=2px(p>0)共焦点F2,抛物线上的点M到y轴的距离等于|MF2|-1,且椭圆与抛物线的交点Q满足|QF2|=$\frac{5}{2}$.
(I)求抛物线的方程和椭圆的方程;
(II)过抛物线上的点P作抛物线的切线y=kx+m交椭圆于A,B两点,设线段AB的中点为C(x0,y0),求x0的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若复数$\frac{m+i}{1-i}$为纯虚数(i为虚数单位),则实数m等于(  )
A.-1B.$-\frac{1}{2}$C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$的一条渐近线的方程为x-2y=0,则该双曲线的离心率为(  )
A.$\sqrt{5}$B.$\frac{{\sqrt{5}}}{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知矩形ABCD,AD=$\sqrt{2}$AB,沿直线BD将△ABD折成△A′BD,使点A′在平面BCD上的射影在△BCD内(不含边界).设二面角A′-BD-C的大小为θ,直线A′D,A′C与平面BCD所成的角分别为α,β,则(  )
A.α<θ<βB.β<θ<αC.β<α<θD.α<β<θ

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知x∈R,则“|x-3|-|x-1|<2”是“x≠1”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若不等式组$\left\{\begin{array}{l}x+2y-4≤0\\ ax+3y-4≥0\\ y≥0\end{array}\right.$表示的平面区域是等腰三角形区域,则实数a的值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在矩形ABCD中,AB=1,BC=2,E为BC的中点,F为线段AD上的一点,且$AF=\frac{3}{2}$.现将四边形ABEF沿直线EF翻折,使翻折后的二面角A'-EF-C的余弦值为$\frac{2}{3}$.

(1)求证:A'C⊥EF;
(2)求直线A'D与平面ECDF所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知cosα=-$\frac{4}{5}$,α∈($\frac{π}{2}$,π),则sinα的值为$\frac{3}{5}$,cos(α+$\frac{π}{4}$)的值为$-\frac{7\sqrt{2}}{10}$.

查看答案和解析>>

同步练习册答案