精英家教网 > 高中数学 > 题目详情
1.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$的一条渐近线的方程为x-2y=0,则该双曲线的离心率为(  )
A.$\sqrt{5}$B.$\frac{{\sqrt{5}}}{2}$C.$\sqrt{3}$D.2

分析 根据题意,由双曲线的方程可得其渐近线方程为y=±$\frac{b}{a}$x,结合题意可得$\frac{b}{a}$=$\frac{1}{2}$,又由离心率公式e2=$\frac{{c}^{2}}{{a}^{2}}$=$\frac{{a}^{2}+{b}^{2}}{{a}^{2}}$=1+$\frac{{b}^{2}}{{a}^{2}}$计算可得e的值,即可得答案.

解答 解:根据题意,双曲线的方程为$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$,其焦点在x轴上,则其渐近线方程为y=±$\frac{b}{a}$x,
又由题意,该双曲线的一条渐近线的方程为x-2y=0,即y=$\frac{1}{2}$x,
则有$\frac{b}{a}$=$\frac{1}{2}$,
则e2=$\frac{{c}^{2}}{{a}^{2}}$=$\frac{{a}^{2}+{b}^{2}}{{a}^{2}}$=1+$\frac{{b}^{2}}{{a}^{2}}$=$\frac{5}{4}$,则有e=$\frac{\sqrt{5}}{2}$,
故选:B.

点评 本题考查双曲线的几何性质,关键要掌握双曲线的渐近线方程以及离心率的计算公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.设非等腰△ABC的内角A、B、C所对边的长分别为a、b、c,且A、B、C成等差数列,用分析法证明:$\frac{1}{a-b}+\frac{1}{c-b}$=$\frac{3}{a-b+c}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在数列{an}中,a1=1,(n2+n)(an+1-an)=2,则a20=$\frac{9}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知x,y∈R,x2+y2+xy=315,则x2+y2-xy的最小值是(  )
A.35B.105C.140D.210

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.当双曲线$\frac{x^2}{{{m^2}+8}}-\frac{y^2}{6-2m}=1$的焦距取得最小值时,其渐近线的方程为(  )
A.y=±xB.$y=±\frac{2}{3}x$C.$y=±\frac{1}{3}x$D.$y=±\frac{1}{2}x$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.二项式(x+2)7的展开式中含x5项的系数是(  )
A.21B.35C.84D.280

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=ax2+bx+c(a,b,c∈R),若存在实数a∈[1,2],对任意x∈[1,2],都有f(x)≤1,则7b+5c的最大值是-6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆M:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的右焦点F的坐标为(1,0),P,Q为椭圆上位于y轴右侧的两个动点,使PF⊥QF,C为PQ中点,线段PQ的垂直平分线交x轴,y轴于点A,B(线段PQ不垂直x轴),当Q运动到椭圆的右顶点时,$|PF|=\frac{{\sqrt{2}}}{2}$.
(Ⅰ)求椭圆M的标准方程;
(Ⅱ)若S△ABO:S△BCF=3:5,求直线PQ的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图,点E是边长为2的正方形ABCD的CD边中点,若向正方形ABCD内随机投掷一点,则所投点落在△ABE内的概率为(  )
A.$\frac{\sqrt{3}}{4}$B.$\frac{\sqrt{3}}{2}$C.$\frac{1}{4}$D.$\frac{1}{2}$

查看答案和解析>>

同步练习册答案