精英家教网 > 高中数学 > 题目详情
已知D是△ABC中边BC上(不包括B、C点)的一动点,且满足
AD
AB
AC
,则
1
α
+
1
β
的最小值为(  )
A、3B、5C、6D、4
考点:基本不等式在最值问题中的应用,平面向量的基本定理及其意义
专题:不等式的解法及应用,平面向量及应用
分析:由题设,先根据三点共线的条件得出α+β=1,再利用基本不等式即可得出
1
α
+
1
β
的最小值.
解答: 解:由于D是△ABC中边BC上(不包括B、C点)的一动点,且满足
AD
AB
AC

所以α,β>0且α+β=1
故有1=α+β≥2
αβ
,解得αβ≤
1
4

所以
1
α
+
1
β
=
α+β
αβ
=
1
αβ
≥4
故选D.
点评:本题考查基本不等式在最值中的应用及三点共线的条件,利用共线条件转化是解答的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设数列{an},{bn}分别是等差数列与等比数列,且a1=b1=3,a3=b3=1,则以下结论正确的是(  )
A、a2>b2
B、a4>b4
C、a4<b4
D、a7>b7

查看答案和解析>>

科目:高中数学 来源: 题型:

设a∈Z,实数x,y满足约束条件
x-y+1≤0
x+y-1≥0
x-2y+a≥0
,若点(x,y)构成的平面区域中恰好含2个整点(横、纵坐均匀整数),则2x-y的最大值是(  )
A、-2B、-1C、0D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积可能是(  )
A、
20
3
cm3
B、6cm3
C、
14
3
cm3
D、4cm3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x,y满足不等式组
y≥ex
4x-y≥0
,则
2y+x
x
的取值范围是(  )
A、[1,4]
B、[2e+1,9]
C、[3,2e+1]
D、[1,e]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
sinωx(ω>0)的部分图象如图所示,若∠ABC=90°,则函数y=f(x)的最小正周期为(  )
A、4B、4πC、2D、2π

查看答案和解析>>

科目:高中数学 来源: 题型:

平面直角坐标系xOy中,椭圆C:
x2
a2
+
y2
b2
=1(a>b>0),椭圆上、下顶点分别为B1,B2.椭圆上关于原点对称两点M(m,n),N(-m,-n)和椭圆上异于M,N两点的任一点P满足直线PM,PN的斜率之积等于-
1
4
(直线PM,PN都不垂直于x轴),焦点F(c,0)在直线x-2y-
3
=0上,直线y=kx+2与椭圆交于不同两点S,T.
(Ⅰ)求C的方程;
(Ⅱ)求证:直线B1S与直线B2T的交点在一条定直线上,并求出这条定直线.

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,a1=-7,其前n项和为Sn,等比数列{bn}中,b1=1,公比为q,且b2+S2=-8.a4=a1+3q
(Ⅰ)求an与bn
(Ⅱ)求Sn,并求Sn当最小时n的取值.

查看答案和解析>>

科目:高中数学 来源: 题型:

求直线
x=-1+2t
y=-2t
被曲线
x=1+4cosθ
y=-1+4sinθ
截得的弦长.

查看答案和解析>>

同步练习册答案