精英家教网 > 高中数学 > 题目详情
16.把正方形ABCD沿对角线BD折成直二面角,对于下列结论:
①AC⊥BD;②△ADC是正三角形;③AB与CD成60°角;④AB与平面BCD成60°角.
则其中正确结论的个数是(  )
A.1个B.2个C.3个D.4个

分析 取BD的中点E,则AE⊥BD,CE⊥BD.根据线面垂直的判定及性质可判断①的真假;求出AC长后,可以判断②的真假;求出AB与平面BCD所成的角可判断③的真假;建立空间坐标系,利用向量法,求出AB与CD所成的角,可以判断④的真假;进而得到答案

解答 解:取BD的中点E,则AE⊥BD,CE⊥BD.
∴BD⊥面AEC.?
∴BD⊥AC,故①正确.?
设正方形边长为a,则AD=DC=a,AE=$\frac{\sqrt{2}}{2}$a=EC.
∴AC=a.?
∴△ADC为等边三角形,故②正确.?
∠ABD为AB与面BCD所成的角为45°,?
以E为坐标原点,EC、ED、EA分别为x,y,z轴建立直角坐标系,?
则A(0,0,$\frac{\sqrt{2}}{2}$a),B(0,-$\frac{\sqrt{2}}{2}$a,0),D(0,$\frac{\sqrt{2}}{2}$a,0),
C($\frac{\sqrt{2}}{2}$a,0,0).
$\overrightarrow{AB}$=(0,-$\frac{\sqrt{2}}{2}$a,-$\frac{\sqrt{2}}{2}$a),$\overrightarrow{DC}$=($\frac{\sqrt{2}}{2}$a,-$\frac{\sqrt{2}}{2}$a,0).
cos<$\overrightarrow{AB}$,$\overrightarrow{DC}$>=$\frac{1}{2}$,
∴<$\overrightarrow{AB}$,$\overrightarrow{DC}$>=60°,故③正确.
∠ABD为AB与面BCD所成的角为45°,故④不正确.?
故选:C

点评 本题考查的知识点是线面垂直的判定与性质,空间两点距离,线面夹角,异面直线的夹角,其中根据已知条件将正方形ABCD沿对角线BD折成直二面角A-BD-C,结合立体几何求出相关直线与直线、直线与平面的夹角,及线段的长是关键,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知g(x)=sin2x,将g(x)的图象向左平移$\frac{π}{8}$个单位长度,再将图象上各点的横坐标缩短到原来的$\frac{1}{4}$,得到函数f(x)的图象,则(  )
A.$f(x)=sin(8x-\frac{π}{4})$B.$f(x)=sin(8x+\frac{π}{4})$C.$f(x)=sin(\frac{x}{2}-\frac{π}{4})$D.$f(x)=sin(\frac{x}{2}+\frac{π}{4})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.sin(-$\frac{17π}{4}$)-cos(-$\frac{17π}{4}$)的值是(  )
A.$\sqrt{2}$B.-$\sqrt{2}$C.0D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若点(0,1)到抛物线x2=ay准线的距离为2,则a=-12或4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.根据已知条件求方程:
(1)求与椭圆$\frac{{x}^{2}}{40}$+$\frac{{y}^{2}}{15}$=1有相同焦点,且离心率$e=\frac{5}{4}$的双曲线的标准方程.
(2)已知椭圆的中心在原点,且过点P(3,2),焦点在x轴上,长轴长是短轴长的3倍,求该椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=(sinx+cosx)2+2cos2x
(1)求函数f(x)的最小正周期和单调减区间;
(2)求使f(x)≥3成立的x的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.成都七中为了全面落实素质教育,切实有效减轻学生课业负担,拟从林荫、高新两个校区的初高中学生中抽取部分学生进行调查,事先已了解到初中三个年级、高中三个年级学生的课业负担情况有较大差异,而男女生课业负担差异不大.在下面的抽样方法中,最合理的抽样方法是(  )
A.简单随机抽样B.按性别分层抽样C.按年级分层抽样D.系统抽样

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的右顶点为A,P为双曲线上的一个动点(不是顶点),若从点A引双曲线的两条渐近线的平行线,与直线OP分别交于Q、R两点,其中O为坐标原点,则|OP|2与|OQ|•|OR|的大小关系为|OP|2=|OQ|•|OR|.(填“>”,“<”或“=”)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.5名志愿者选4人去“鸟巢”和“水立方”实地培训,每处2人,则选派方法有(  )
A.50B.40C.30D.90

查看答案和解析>>

同步练习册答案