精英家教网 > 高中数学 > 题目详情
2.如图,在棱锥P-ABCD中,侧面PDC是边长为2的正三角形,底面ABCD是菱形,平面PCD⊥平面ABCD,M是PB的中点,且∠BCD=120°.
(Ⅰ)求证:PA⊥CD;
(Ⅱ)求直线PD与平面CDM所成角的正弦值.

分析 (Ⅰ)推导出三角形CDA为等边三角形,取CD的中点O,连接AC,AO,PO,则AO⊥CD,PO⊥CD,从而CD⊥平面AOP,由此能证明CD⊥PA.
(Ⅱ)以O为原点,直线OD,OA,OP分别为x,y,z轴,建立空间直角坐标系Oxyz,利用向量法能求出直线PD与平面CDM所成角大小的正弦值.

解答 (本题满分12分)
证明:(Ⅰ)因为底面ABCD是菱形,且∠BCD=120°,
所以∠CDA=60°,
所以三角形CDA为等边三角形.
取CD的中点O,连接AC,AO,PO,
则AO⊥CD,PO⊥CD,AO∩PO=O,
∴CD⊥平面AOP,∴CD⊥PA.…(4分)
解:(Ⅱ)平面PCD⊥平面ABCD,OP⊥OA,∴OP⊥平面ABCD,
以O为原点,直线OD,OA,OP分别为x,y,z轴,
建立空间直角坐标系Oxyz,如图所示,
则$P(0,0,\sqrt{3}),D(1,0,0),C(-1,0,0),B(-2,\sqrt{3},0)$,$M(-1,\frac{{\sqrt{3}}}{2},\frac{{\sqrt{3}}}{2})$,
$\overrightarrow{PD}=(1,0-\sqrt{3})$,$\overrightarrow{CD}=(2,0,0)$,$\overrightarrow{CM}=(0,\frac{{\sqrt{3}}}{2},\frac{{\sqrt{3}}}{2})$…(6分)
设$\overrightarrow n=(x,y,z)$为平面CDM的法向量,则
$\left\{\begin{array}{l}\overrightarrow n•\overrightarrow{CD}=0\\ \overrightarrow n•\overrightarrow{CM}=0\end{array}\right.$,即$\left\{\begin{array}{l}2x=0\\ \frac{{\sqrt{3}}}{2}y+\frac{{\sqrt{3}}}{2}z=0\end{array}\right.$,令y=1,则z=-1,∴$\overrightarrow n=(0,1,-1)$…(8分)
∴$cos<\overrightarrow{PD},\overrightarrow n>=\frac{{\overrightarrow{PD}•\overrightarrow n}}{{|{\overrightarrow{PD}}||{\overrightarrow n}|}}=\frac{{\sqrt{3}}}{{2\sqrt{2}}}=\frac{{\sqrt{6}}}{4}$…(10分)
∴直线PD与平面CDM所成角大小的正弦值为$\frac{{\sqrt{6}}}{4}$…(12分)

点评 本题考查线线垂直的证明,考查线面角的正弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.已知平面向量$\overrightarrow a$与$\overrightarrow b$满足$\overrightarrow a=({2,1})$,$\overrightarrow b=({-3,4})$,则$3\overrightarrow a+4\overrightarrow b$=(-6,19).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数f(x)=x2+2x,集合A={(x,y)|f(x)+f(y)≤2},B={(x,y)|f(x)≤f(y)},则由A∩B的元素构成的图形的面积是(  )
A.πB.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设函数$f(x)=\frac{a}{x^2}+lnx,a∈R$.
(1)讨论函数f(x)的单调性;
(2)如果对任意的$x∈[{\frac{1}{2},2}]$,都有$f(x)≥\frac{1}{x}$恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,锐角△ABC中,$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow{b}$,点M为BC的中点.
(Ⅰ)试用$\overrightarrow{a}$,$\overrightarrow{b}$表示$\overrightarrow{AM}$;
(Ⅱ)若|$\overrightarrow{a}$|=5,|$\overrightarrow{b}$|=3,sin∠BAC=$\frac{4}{5}$,求中线AM的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设数列{an}满足a1=6,a2=-3,2an+2=an+1+an
(1)记bn=an+1-an,证明:{bn}是等比数列;
(2)求数列{an}的前n项和Sn的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.给出以下四个结论:
①函数$f(x)=\frac{2x-1}{x+1}$的对称中心是(-1,2);
②若关于x的方程$x-\frac{1}{x}+k=0在x∈({0,1})$没有实数根,则k的取值范围是k≥2;
③在△ABC中,“bcosA=acosB”是“△ABC为等边三角形”的充分不必要条件;
④若$f(x)=sin({2x-\frac{π}{3}})$的图象向右平移φ(φ>0)个单位后为奇函数,则φ最小值是$\frac{π}{12}$.
其中正确的结论是①.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知对数函数f(x)=logax(a>0,a≠1).
(1)若f(8)=3,求a的值;
(2)解不等式f(x)≤loga(2-3x).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数$f(x)=\sqrt{3}sin({ωx+ω})-cos({ωx+ω})({-\frac{π}{2}<φ<0,ω>0})$为偶函数,且函数的y=f(x)图象相邻的两条对称轴间的距离为$\frac{π}{2}$.
(1)求$f({\frac{π}{24}})$的值;
(2)将y=f(x)的图象向右平移$\frac{π}{6}$个单位后,再将所得的图象上个点的横坐标伸长为原来的4倍,纵坐标不变,得到函数y=g(x)的图象,求y=g(x)的单调区间,并求其在$[{-\frac{π}{3},\frac{5π}{6}}]$上的最值.

查看答案和解析>>

同步练习册答案