分析 (Ⅰ)推导出三角形CDA为等边三角形,取CD的中点O,连接AC,AO,PO,则AO⊥CD,PO⊥CD,从而CD⊥平面AOP,由此能证明CD⊥PA.
(Ⅱ)以O为原点,直线OD,OA,OP分别为x,y,z轴,建立空间直角坐标系Oxyz,利用向量法能求出直线PD与平面CDM所成角大小的正弦值.
解答 (本题满分12分)
证明:(Ⅰ)因为底面ABCD是菱形,且∠BCD=120°,
所以∠CDA=60°,![]()
所以三角形CDA为等边三角形.
取CD的中点O,连接AC,AO,PO,
则AO⊥CD,PO⊥CD,AO∩PO=O,
∴CD⊥平面AOP,∴CD⊥PA.…(4分)
解:(Ⅱ)平面PCD⊥平面ABCD,OP⊥OA,∴OP⊥平面ABCD,
以O为原点,直线OD,OA,OP分别为x,y,z轴,
建立空间直角坐标系Oxyz,如图所示,
则$P(0,0,\sqrt{3}),D(1,0,0),C(-1,0,0),B(-2,\sqrt{3},0)$,$M(-1,\frac{{\sqrt{3}}}{2},\frac{{\sqrt{3}}}{2})$,
$\overrightarrow{PD}=(1,0-\sqrt{3})$,$\overrightarrow{CD}=(2,0,0)$,$\overrightarrow{CM}=(0,\frac{{\sqrt{3}}}{2},\frac{{\sqrt{3}}}{2})$…(6分)
设$\overrightarrow n=(x,y,z)$为平面CDM的法向量,则
$\left\{\begin{array}{l}\overrightarrow n•\overrightarrow{CD}=0\\ \overrightarrow n•\overrightarrow{CM}=0\end{array}\right.$,即$\left\{\begin{array}{l}2x=0\\ \frac{{\sqrt{3}}}{2}y+\frac{{\sqrt{3}}}{2}z=0\end{array}\right.$,令y=1,则z=-1,∴$\overrightarrow n=(0,1,-1)$…(8分)
∴$cos<\overrightarrow{PD},\overrightarrow n>=\frac{{\overrightarrow{PD}•\overrightarrow n}}{{|{\overrightarrow{PD}}||{\overrightarrow n}|}}=\frac{{\sqrt{3}}}{{2\sqrt{2}}}=\frac{{\sqrt{6}}}{4}$…(10分)
∴直线PD与平面CDM所成角大小的正弦值为$\frac{{\sqrt{6}}}{4}$…(12分)
点评 本题考查线线垂直的证明,考查线面角的正弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | π | B. | 2π | C. | 3π | D. | 4π |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com