精英家教网 > 高中数学 > 题目详情
已知抛物线C:y2=ax与双曲线
x2
2
-
y2
2
=1的右焦点重合.
(1)求抛物线C的方程;
(2)过点A(2.0)作倾斜角为
π
4
的直角,与抛物线C交于M、N两点,判断∠MON是否为直角.若角MON为直角,请给出证明:若不是直角,请说明理由.
考点:直线与圆锥曲线的关系,抛物线的标准方程,双曲线的简单性质
专题:综合题,圆锥曲线的定义、性质与方程
分析:(1)确定双曲线
x2
2
-
y2
2
=1的右焦点为(2,0),可得
a
4
=2
,即可求抛物线C的方程;
(2)由题意得直线方程为y=x-2,与抛物线方程联立,证明x1x2+y1y2=4-16≠0,即可得出结论.
解答: 解:(1)双曲线
x2
2
-
y2
2
=1的右焦点为(2,0),故
a
4
=2
,解得a=8.
∴所求抛物线方程为y2=8x;
(2)由题意得直线方程为y=x-2,设交点坐标为M(x1,y1),N(x2,y2),
联立方程组
y=x-2
y2=8x
,可化为x2-12x+4=0,△>0
∴x1+x2=12,x1x2=4,
∴y1y2=(x1-2)(x2-2)=-16,
故x1x2+y1y2=4-16≠0,
∴OM、ON不垂直,即∠MON不是直角.
点评:本题考查双曲线的几何性质,考查抛物线的方程,考查直线与抛物线的位置关系,考查韦达定理的运用,确定抛物线方程是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分成6组:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]加以统计,得到如图所示的频率分布直方图.已知高一年级共有学生500名,据此估计,该模块测试成绩不少于60分的学生人数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知角α的终边经过点(12,-5),则sinα等于(  )
A、
1
5
B、-
1
5
C、
5
13
D、-
5
13

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线x+y=1与圆x2+y2=a交于A、B两点,O是原点,C是圆上一点,若
OA
+
OB
=
OC
,则a的值为(  )
A、1
B、
2
C、2
D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题:
(1)空间中,到一定点距离等于定长的点的集合是球面;
(2)球面上不同的三点不可能在同一直线上;
(3)过球面上不同的两点只能作一个大圆;
(4)球的表面积是半径相同的圆面积的4倍.
其中假命题的个数是(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

六人按下列要求站一横排,分别有多少种不同的站法?
(1)甲、乙不相邻;
(2)甲、乙之间间隔两人;
(3)甲不站左端,乙不站右端.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在矩形ABCD中,已知A(2,0),C(-2,2),点P在BC边上移动,线段OP的垂直平分线交y轴于点E,点M满足
EM
=
EO
+
EP

(1)求点M的轨迹方程;
(2)已知点F(0,
1
2
),过点F的直线l交点M的轨迹于Q、R两点,且
QF
FR 
,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+c,(a,b,c∈R)的最小值为-1,且关于x的一元二次不等式ax2+bx+c>0的解集为(-∞,-2)∪(0,+∞).
(Ⅰ)求函数y=f(x)的解析式;
(Ⅱ)设F(x)=tf(x)-x-3其中t≥0,求函数F(x)在x∈[-
3
2
,2]
时的最大值H(t)
(Ⅲ)若g(x)=f(x)+k(k为实数),对任意m∈[0,+∞),总存在n∈[0,+∞)使得g(m)=H(n)成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx-
a
x

(1)若a>0,试判断f(x)在定义域内的单调性;
(2)若f(x)<x2在(1,+∞)上恒成立,求a的取值范围.

查看答案和解析>>

同步练习册答案