精英家教网 > 高中数学 > 题目详情
6.已知x∈(-2,3),则函数f(x)=-x2+2x的单调增区间是(-2,1].

分析 利用二次函数的对称轴以及开口方向,求解即可.

解答 解:函数f(x)=-x2+2x的开口向下,对称轴为x=1,
所以x∈(-2,1]函数是增函数;x∈[1,3)是减函数,
函数的单调增区间为(-2,1].
故答案为:(-2,1].

点评 本题考查二次函数的基本性质,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知x,y∈R,i为虚数单位,且yi-x=-1+i,则(1-i)x+y的值为(  )
A.2B.-2iC.-4D.2i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.命题${P}:Ex∈[-\frac{π}{6},\frac{π}{4}],2sin(2x+\frac{π}{6})-m=0$,命题q:Ex∈(0,+∞),x2-2mx+1<0,若 P∧(?q)为真命题,则实数犿的取值范围为(  )
A.[-2,1]B.[-1,1]C.[-1,1)D.(0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=(sinx+cosx)cosx,则下列说法正确的为(  )
A.函数f(x)的最小正周期为2π
B.f(x)的最大值为$\sqrt{2}$
C.f(x)的图象关于直线x=-$\frac{π}{8}$对称
D.将f(x)的图象向右平移$\frac{π}{8}$,再向下平移$\frac{1}{2}$个单位长度后会得到一个奇函数的图象

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=$\frac{cosx}{x}$(x>0),g(x)=sinx-ax(x>0)
(1)若f(x)≥g(x)在x∈(0,+∞)上恒成立,求实数a的取值范围.
(2)设点P是函数φ(x)与ω(x)的图象的交点,若直线l同时与函数φ(x),ω(x)的图象相切于P点,且函数φ(x),ω(x)的图象位于直线l的两侧,则称直线l为函数φ(x),ω(x)的分切线,探究:是否存在实数a,使得函数f(x)与g(x)存在分切线?若存在,求出实数a的值,并写出分切线方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数$f(x)={2^{{x^2}+1}}$,$x∈[{-1,\;\sqrt{2}}]$的值域为(  )
A.[2,8]B.[4,8]C.[1,3]D.[2,3]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数y=f(x)为R上的偶函数,当x≥0时,f(x)=log2(x+2)-3,则f(6)=0,f(f(0))=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在△ABC中,内角A、B、C所对的边分别为a、b、c,a=$\sqrt{3}$,b+c=3.
(Ⅰ)求cosA+2cos$\frac{B+C}{2}$的最大值;
(Ⅱ)在(I)的条件下,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.O为原点,F为y2=4x的焦点,A为抛物线上一点,若$\overrightarrow{OA}$•$\overrightarrow{AF}$=-4,则A点坐标为(  )
A.(2,±2$\sqrt{2}$)B.(1,±2)C.(1,2)D.(2,2$\sqrt{2}$)

查看答案和解析>>

同步练习册答案