精英家教网 > 高中数学 > 题目详情
16.O为原点,F为y2=4x的焦点,A为抛物线上一点,若$\overrightarrow{OA}$•$\overrightarrow{AF}$=-4,则A点坐标为(  )
A.(2,±2$\sqrt{2}$)B.(1,±2)C.(1,2)D.(2,2$\sqrt{2}$)

分析 求出F的坐标,设出A的坐标,利用向量的数量积求解即可.

解答 解:y2=4x的焦点F(1,0),设A($\frac{{b}^{2}}{4}$,b),
∵$\overrightarrow{OA}$•$\overrightarrow{AF}$=-4,∴($\frac{{b}^{2}}{4}$,b)•(1-$\frac{{b}^{2}}{4}$,-b)=-4,解得b=±2.
A点坐标为:(1,±2).
故选:B.

点评 本题考查抛物线的简单性质的应用,向量的数量积的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.已知x∈(-2,3),则函数f(x)=-x2+2x的单调增区间是(-2,1].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物,如图是根据某地某日早7点至晚8点甲、乙两个监测点统计的数据(单位:毫克/每立方米)列出的茎叶图,则甲、乙两地浓度的方差较小的是甲.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.假期,六盘水市教育局组织部分教师分别到A、B、C、D四个地方进行新课程培训,教育局按定额购买了前往四地的车票.如图1是未制作完成的车票种类和数量的条形统计图,请根据统计图回答下列问题:

(1)若去C地的车票占全部车票的30%,则去C地的车票数量是30张,补全统计图.
(2)若教育局采用随机抽取的方式分发车票,每人一张(所有车票的形状、大小、质地完全相同且充分洗匀),那么余老师抽到去B地的概率是多少?
(3)若有一张去A地的车票,张老师和李老师都想要,决定采取旋转转盘的方式来确定.其中甲转盘被分成四等份且标有数字1、2、3、4,乙转盘分成三等份且标有数字7、8、9,如图2所示.具体规定是:同时转动两个转盘,当指针指向的两个数字之和是偶数时,票给李老师,否则票给张老师(指针指在线上重转).试用“列表法”或“树状图”的方法分析这个规定对双方是否公平.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知12sinα-5cosα=13,则tanα=(  )
A.-$\frac{5}{12}$B.-$\frac{12}{5}$C.±$\frac{12}{5}$D.±$\frac{7}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.将一条长为8cm的线段分成长度为正整数的三段,这三段能构成三角形的概率=$\frac{1}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若实数x,y满足$\left\{\begin{array}{l}{y≤2}\\{|x|-y+1≤0}\end{array}\right.$,则z=$\frac{x+y}{x-2}$的最小值为(  )
A.-2B.-3C.-4D.-5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知A,B,P是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1上不同的三点,且A,B连线经过坐标原点,若直线PA,PB的斜率乘积kPA•kPB=$\frac{1}{4}$,则该双曲线的离心率为(  )
A.$\frac{\sqrt{5}}{2}$B.$\sqrt{3}$C.2D.$\frac{\sqrt{15}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知数列{an}为等比数列,a1=1,且a2,a3+1,a4成等差数列.
(Ⅰ)求数列的通项公式an
(Ⅱ)若数列{bn}满足:bn=$\frac{a_n}{{({a_n}+1)({a_{n+1}}+1)}}$,设其前n项和为Sn,证明:Sn<$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案