精英家教网 > 高中数学 > 题目详情
12.不等式9x2+6x+1≥0的解集为(  )
A.{x|x$≠-\frac{1}{3}$}B.{-$\frac{1}{3}$}C.D.R

分析 把不等式9x2+6x+1≥0化为(3x+1)2≥0,得出该不等式的解集为R.

解答 解:不等式9x2+6x+1≥0可化为(3x+1)2≥0,
该不等式恒成立,
所以它的解集为R.
故选:D.

点评 本题考查了一元二次不等式的解法与应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.在△ABC中,D,E分别在边AC,BC上,且$\overrightarrow{AC}$=2$\overrightarrow{AD}$,$\overrightarrow{BC}$=3$\overrightarrow{BE}$,AE,BD交于F点,设$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow{b}$
(I)用$\overrightarrow{a}$,$\overrightarrow{b}$表示$\overrightarrow{AE}$;
(Ⅱ)若$\overrightarrow{AF}$=$λ\overrightarrow{AE}$,求实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.“-$\frac{1}{2}<x<1$”是“不等式|x-1|<1成立”的(  )
A.充分非必要条件B.必要非充分条件
C.充要条件D.既非充分亦非必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知sinα=$\frac{12}{13}$,cosβ=-$\frac{3}{5}$,α、β均为第二象限角,求cos(α-β),tan(α+β).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在数列{an}中,$\frac{1}{{a}_{n}}$+$\frac{1}{{a}_{n+2}}$=$\frac{2}{{a}_{n+1}}$,且$\frac{1}{{a}_{2}}$+$\frac{1}{{a}_{10}}$+$\frac{1}{{a}_{6}}$=12,则$\frac{1}{{a}_{8}}$+$\frac{1}{{a}_{4}}$=(  )
A.12B.24C.8D.16

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.求下列各式中x的值.
(1)log${\;}_{\sqrt{3}}$9=x.
(2)-lne2=x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在四棱锥P-ABCD中,PD⊥面ABCD,AB∥DC,AB⊥AD,DC=6,AD=8,BC=10,∠PAD=45°,E为PA的中点.
(1)求证:DE∥面PBC;
(2)求三棱锥E-PBC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知集合A={x|x≥1},$B=\{x|\frac{x-2}{x}≤0\}$,则A∩(∁RB)=(  )
A.(2,+∞)B.[1,2]C.(0,+∞)D.(-∞,0]∪[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知|$\overrightarrow{a}$|=1与|$\overrightarrow{b}$|=2,且两向量的夹角<$\overrightarrow{a}$,$\overrightarrow{b}$>=$\frac{π}{3}$,求($\overrightarrow{a}$-2$\overrightarrow{b}$)•$\overrightarrow{b}$.

查看答案和解析>>

同步练习册答案