精英家教网 > 高中数学 > 题目详情
13.已知函数f(x)=$\frac{sinx}{{x}^{2}+1}$,则f′(π)=-$\frac{1}{{π}^{2}+1}$.

分析 利用导数的运算法则即可得出.

解答 解:f′(x)=$\frac{({x}^{2}+1)cosx-2xsinx}{({x}^{2}+1)^{2}}$,
∴f′(π)=$\frac{-({π}^{2}+1)}{({π}^{2}+1)^{2}}$=$-\frac{1}{{π}^{2}+1}$.
故答案为:$-\frac{1}{{π}^{2}+1}$.

点评 本题考查了导数的运算法则,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知向量$\overrightarrow{a},\overrightarrow{b}$,命题p:$\overrightarrow{a}•\overrightarrow{b}$=-${\overrightarrow{a}}^{2}$,命题q:$\overrightarrow{a}$=-$\overrightarrow{b}$,则p是q的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在多面体ABCDEF中,底面ABCD是边长为2的菱形,∠BAD=60°,四边形BDEF是矩形,平面BDEF⊥平面ABCD,BF=3,G和H分别是CE和CF的中点.
(Ⅰ)求证:平面BDGH∥平面AEF;
(Ⅱ)求CF与平面BDEF所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.5名乒乓球队员中,有2名老队员和3名新队员,现从中选出3名队员排成1,2,3号参加团体比赛,则入选的3名队员中至少有一名老队员,且1,2号至少有1名新队员的排法有(  )种.
A.12B.36C.48D.72

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在△ABC中,sinA:sinC=3:4,∠B=120°,S△ABC=12$\sqrt{3}$,求a,b,c三边的边长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在△ABC中,若2b=a+c,b2=ac,则△ABC的形状为(  )
A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.若sinα+cosα=1,求证:sin6α+cos6α=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆C:$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{{b}^{2}}$=1(a>b>0),离心率为$\frac{\sqrt{2}}{2}$,焦点F1(0,-c),F2(0,c),过F1的直线交椭圆于M,N两点,且△F2MN的周长为8.
(1)求椭圆方程;
(2)与y轴不重合的直线l与y轴交与点P(0,m)(m≠0),与椭圆C交于相异两点A,B,且$\overrightarrow{AP}$=λ$\overrightarrow{PB}$,若$\overrightarrow{OA}$+λ$\overrightarrow{OB}$=4$\overrightarrow{OP}$,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)=mlnx+nx(m、,n∈R),曲线y=f(x)在点(1,f(1))处的切线方程为x-2y-2=0.(1)m+n=$\frac{1}{2}$;(2)若x>1时,f(x)+$\frac{k}{x}$<0恒成立,则实数k的取值范围是$(-∞,\frac{1}{2}]$.

查看答案和解析>>

同步练习册答案