精英家教网 > 高中数学 > 题目详情
6.(1)计算:(-$\frac{1}{\sqrt{2}-π}$)0+lne-$\sqrt{(-5)^{2}}$+8${\;}^{\frac{1}{3}}$+log62+log63;
(2)已知向量$\overrightarrow{a}$=(sinθ,cosθ),$\overrightarrow{b}$=(-2,1),满足$\overrightarrow{a}$∥$\overrightarrow{b}$,其中θ∈($\frac{π}{2}$,π),求cosθ的值.

分析 (1)利用有理指数幂以及对数运算法则化简求解即可.
(2)利用向量共线列出方程,然后求解三角函数值.

解答 (本小题满分12分)
解析:(1)原式=1+1-5+2+1=0;              …(6分)
(2)∵向量$\overrightarrow{a}$=(sinθ,cosθ),$\overrightarrow{b}$=(-2,1),满足$\overrightarrow{a}$∥$\overrightarrow{b}$,
∴sinθ=-2cosθ,①…(9分)
又sin2θ+cos2θ+=1,②
由①②解得cos2θ=$\frac{1}{5}$,…(11分)
∵θ∈($\frac{π}{2}$,π),∴cosθ=-$\frac{\sqrt{5}}{5}$.                …(12分)

点评 本题考查对数运算法则以及三角函数的化简求值,向量共线的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知等腰三角形的周长是21(定数),问它的腰多长其面积为最大?并求其最大的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.动直线l:(3λ+1)x+(1-λ)y+6-6λ=0过定点P,则点P的坐标为(0,-6)若直线l与不等式组$\left\{\begin{array}{l}{x≥0}\\{y≥0}\\{2x+y≤2}\end{array}\right.$表示的平面区域有公共点,则实数λ的取值范围是1<λ≤$\frac{7}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.a2+b2+c2+x2+y2=16$\sqrt{21}$,求证:(ax+by)2+(bx+cy)2≤2016.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若a∈R,则“1<a<2”是“a2-3a≤0”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充要条件D.既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.棱长为1的正方体ABCD-A1B1C1D1中,$\overrightarrow{A{B_1}}•\overrightarrow{B{C_1}}$的值为(  )
A.-1B.1C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数$f(x)=2{sin^2}ωx+\sqrt{3}sin2ωx$(ω>0)的一条对称轴为直线$x=\frac{π}{8}$,则f(x)的最小正周期为$\frac{π}{4k+\frac{8}{3}}$,k∈Z,k≥0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=m-$\frac{2}{{2}^{x}+1}$是定义在R上的奇函数.
(Ⅰ)求m的值;
(Ⅱ)求函数f(x)在(0,1)上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若函数f(x)=(2x2-ax-6a2)•ln(x-a)的值域是[0,+∞),则实数a=-$\frac{2}{5}$或1.

查看答案和解析>>

同步练习册答案