精英家教网 > 高中数学 > 题目详情
5.若多项式x2+x10=a0+a1(x+1)+…+a8(x+1)8+a9(x+1)9+a10(x+1)10,则a8=(  )
A.45B.9C.-45D.-9

分析 先凑成二项式,再利用二项展开式的通项公式求出(x+1)10的系数,即为所求.

解答 解:a8是 x10=[-1+(x+1)]10的展开式中第9项(x+1)8的系数,
故a8=${C}_{10}^{2}$=45,
故选:A.

点评 本题主要考查二项展开式的通项公式,二项展开式系数的性质以及多项恒等式系数相等的性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.求值:tan75°+tan15°=4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知数列{an}的各项为正值且首项为1,a2=2,Sn为其前n项和.函数f(x)=an•an+2x+a2n+1cosx在x=$\frac{π}{2}$处的切线平行于x轴.
(1)求an和Sn
(2)设bn=log2an+1,数列{$\frac{1}{{b}_{n}{b}_{n+1}}$}的前n项和为Tn,求证:Tn<1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知F1(-c,0),F2(c,0)为椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的两个焦点,若该椭圆与圆x2+y2=2c2有公共点,则此椭圆离心率的取值范围是$[\frac{{\sqrt{3}}}{3},\frac{{\sqrt{2}}}{2}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知F1(-c,0),F2(c,0)分别是椭圆M:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点,且|F1F2|=2$\sqrt{3}$,离心率e=$\frac{\sqrt{3}}{2}$.
(1)求椭圆M的标准方程;
(2)过椭圆右焦点F2作直线l交椭圆M于A,B两点.
①当直线l的斜率为1时,求线段AB的长;
②若椭圆M上存在点P,使得以OA,OB为邻边的四边形OAPB为平行四边形(O为坐标原点),求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.直线l:x-2y+2=0过椭圆的上焦点F1和一个顶点B,该椭圆的离心率为(  )
A.$\frac{\sqrt{5}}{5}$B.$\frac{2\sqrt{5}}{5}$C.$\frac{1}{5}$D.$\frac{2}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.Z=$\frac{2}{1+i}$,则Z的模等于$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列各组中的两个函数是同一函数的是(  )
A.f(x)=$\frac{{x}^{2}-1}{x-1}$和f(x)=x+1
B.f(r)=πr2(r≥0)和g(x)=πx2(x≥0)
C.f(x)=logaax(a>0且a≠1)和g(x)=${a}^{lo{g}_{a}x}$(a>0且a≠1)
D.f(x)=x和g(t)和g(t)=$\sqrt{{t}^{2}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.16个同类产品中有14个正品,2个次品,从中任意抽取3个,则下列事件中概率为1的是(  )
A.三个都是正品B.三个都是次品
C.三个中至少有一个是正品D.三个中至少有一个次品

查看答案和解析>>

同步练习册答案