精英家教网 > 高中数学 > 题目详情
16.已知数列{an}的各项为正值且首项为1,a2=2,Sn为其前n项和.函数f(x)=an•an+2x+a2n+1cosx在x=$\frac{π}{2}$处的切线平行于x轴.
(1)求an和Sn
(2)设bn=log2an+1,数列{$\frac{1}{{b}_{n}{b}_{n+1}}$}的前n项和为Tn,求证:Tn<1.

分析 (1)求函数的导数,根据导数的几何意义建立方程关系,判断数列为等比数列,求出公比即可求an和Sn
(2)求出bn=log2an+1的表达式,利用裂项法进行求和,即可证明不等式.

解答 解:(1)由f(x)=an•an+2x+a2n+1cosx知f′(x)=an•an+2-a2n+1sinx,
∵f(x)=an•an+2x+a2n+1cosx在x=$\frac{π}{2}$处的切线平行于x轴,
∴f′($\frac{π}{2}$)=0,
即an•an+2-a2n+1sin$\frac{π}{2}$=an•an+2-a2n+1=0,
即an•an+2=a2n+1
∴{an}是等比数列,公比q=$\frac{{a}_{2}}{{a}_{1}}=2$,
∴an=a1qn-1=2n-1,${S}_{n}=\frac{{a}_{1}(1-{q}^{n})}{1-q}=\frac{1-{2}^{n}}{1-2}$=2n-1,
(2)由(1)知an+1=2n
∴bn=log2an+1=log22n=n.
∴$\frac{1}{{b}_{n}{b}_{n+1}}$=$\frac{1}{n(n+1)}=\frac{1}{n}$-$\frac{1}{n+1}$.
∴Tn=$1-\frac{1}{2}$$+\frac{1}{2}-\frac{1}{3}+…+$$\frac{1}{n}$-$\frac{1}{n+1}$=1-$\frac{1}{n+1}$<1,

点评 本题主要考查数列通项公式和前n项和的计算,以及数列求和,利用裂项法是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.直线x-y-4=0上有一点P,它与两定点A(1,1)、B(2,3)的距离相等,则点P的坐标是($\frac{9}{2},\frac{1}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知p:0≤2x-1≤7,q:x2-(2a+3)x+a2+3a≤0(a为常数),
(Ⅰ)若p是q的充要条件,求a的值;
(Ⅱ)若¬q是p的必要不充分条件,求a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),两个焦点分别为F1,F2
(1)若|F1F2|=2,点P在椭圆上,且△PF1F2的周长为6,求椭圆C的方程;
(2)动圆Γ:x2+y2=R2,其中b<R<a,若A是椭圆C上的动点,B是动圆Γ上的动点,且直线AB与椭圆C和动圆Γ均相切,求A、B两点的距离|AB|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.两直线ax+by+4=0和(1-a)x-y-b=O都平行于x+2y+3=0,则(  )
A.$\left\{\begin{array}{l}{a=\frac{2}{3}}\\{b=-3}\end{array}\right.$B.$\left\{\begin{array}{l}{a=\frac{3}{2}}\\{b=-3}\end{array}\right.$C.$\left\{\begin{array}{l}{a=-\frac{3}{2}}\\{b=3}\end{array}\right.$D.$\left\{\begin{array}{l}{a=\frac{3}{2}}\\{b=3}\end{array}\right.$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知椭圆C的方程为$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a≥2b>0),则椭圆C的离心率的取值范围是[$\frac{\sqrt{3}}{2}$,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,已知边长为2的菱形ABCD与菱形ACEF全等,且∠FAC=∠ABC,平面ABCD⊥平面ACEF,点G为CE的中点.
(Ⅰ)求证:AE∥平面DBG;
(Ⅱ)求证:FC⊥BG;
(Ⅲ)求三棱锥E-BGD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若多项式x2+x10=a0+a1(x+1)+…+a8(x+1)8+a9(x+1)9+a10(x+1)10,则a8=(  )
A.45B.9C.-45D.-9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列函数中,是偶函数且在(0,1)上单调递减的是(  )
A.y=x-2B.y=x4C.y=${x^{\frac{1}{2}}}$D.y=-${x^{\frac{1}{3}}}$

查看答案和解析>>

同步练习册答案