已知函数
。
(1)若
,函数
在
上既能取到极大值,又能取到极小值,求
的取值范围;
(2)当
时,
对任意的
恒成立,求
的取值范围;
科目:高中数学 来源: 题型:解答题
(本题15分)已知函数
图象的对称中心为
,且
的极小值为
.
(1)求
的解析式;
(2)设
,若
有三个零点,求实数
的取值范围;
(3)是否存在实数
,当
时,使函数![]()
在定义域[a,b] 上的值域恰为[a,b],若存在,求出k的范围;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数
定义域为
(
),设
.
(1)试确定
的取值范围,使得函数
在
上为单调函数;
(2)求证:
;
(3)求证:对于任意的
,总存在
,满足
,并确定这样的
的个数.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题13分)
已知f(x)=lnx+x2-bx.
(1)若函数f(x)在其定义域内是增函数,求b的取值范围;
(2)当b=-1时,
设g(x)=f(x)-2x2,求证函数g(x)只有一个零点.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com