精英家教网 > 高中数学 > 题目详情
15.若二项式(x-$\frac{a}{x}$)6的展开式中常数项为20,则a=-1.

分析 利用通项公式即可得出.

解答 解:通项公式Tr+1=${∁}_{6}^{r}{x}^{6-r}(-\frac{a}{x})^{r}$=(-a)r${∁}_{6}^{r}$x6-2r,令6-2r=0,解得r=3.
∴(-a)3${∁}_{6}^{3}$=20,解得a=-1.
故答案为:-1.

点评 本题考查了二项式定理的应用,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率为$\frac{1}{2}$,且过点$(1,\frac{3}{2})$.若点M(x0,y0)在椭圆C上,则点$N(\frac{x_0}{a},\frac{y_0}{b})$称为点M的一个“椭点”.
(1)求椭圆C的标准方程;
(2)若直线l:y=kx+m与椭圆C相交于A,B两点,且A,B两点的“椭点”分别为P,Q,以PQ为直径的圆经过坐标原点,试求△AOB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f (x)=ex-ax-1,其中e为自然对数的底数,a∈R.
(1)若a=e,函数g (x)=(2-e)x.
①求函数h(x)=f (x)-g (x)的单调区间;
②若函数F(x)=$\left\{\begin{array}{l}f(x),x≤m\\ g(x),x>m\end{array}$的值域为R,求实数m的取值范围;
(2)若存在实数x1,x2∈[0,2],使得f(x1)=f(x2),且|x1-x2|≥1,求证:e-1≤a≤e2-e.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设$\frac{i}{1+i}$=a+bi(a,b∈R,i为虚数单位),则|a-bi|=(  )
A.1B.$\frac{1}{2}$C.$\sqrt{2}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.等比数列{an}中,a3-3a2=2,且5a4为12a3和2a5的等差中项,则{an}的公比等于(  )
A.3B.2或3C.2D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在如图所示的五面体中,面ABCD为直角梯形,∠BAD=∠ADC=$\frac{π}{2}$,平面ADE⊥平面ABCD,EF=2DC=4AB=4,△ADE是边长为2的正三角形.
(Ⅰ)证明:BE⊥平面ACF;
(Ⅱ)求二面角A-BC-F的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.复数Z=i(1+i)在复平面内对应的点的坐标为(-1,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知等差数列{an}的前n项和为Sn,且满足S4=24,S7=63.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若bn=2an+an,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设函数$f(x)=\frac{1}{x},g(x)=a{x^2}+bx(a,b∈R,a≠0)$,若y=f(x)的图象与y=g(x)图象有且仅有两个不同的公共点A(x1,y1),B(x2,y2),有如下命题:
①当a<0时,x1+x2<0,y1+y2>0
②当a<0时,x1+x2>0,y1+y2<0
③当a>0时,x1+x2<0,y1+y2<0
④当a>0时,x1+x2>0,y1+y2>0
其中,正确命题的序号是②.

查看答案和解析>>

同步练习册答案