精英家教网 > 高中数学 > 题目详情
7.复数Z=i(1+i)在复平面内对应的点的坐标为(-1,1).

分析 利用复数的运算法则、几何意义即可得出.

解答 解:Z=i(1+i)=i-1在复平面内对应的点的坐标为(-1,1).
故答案为:(-1,1)

点评 本题考查了复数的运算法则、几何意义,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.函数f(x)=asinωx+acosωx(a>0,ω>0)的图象如图所示,则实数a和ω的最小正值分别为(  )
A.a=2,ω=2B.a=2,ω=1C.a=2,$ω=\frac{3}{2}$D.a=2,$ω=\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知f(x)=$\left\{\begin{array}{l}{\frac{x}{{x}^{2}+1},x≥0}\\{-\frac{1}{x},x<0}\end{array}\right.$,若函数g(x)=f(x)-t有三个不同的零点x1,x2,x3(x1<x2<x3),则
-$\frac{1}{x_1}+\frac{1}{x_2}+\frac{1}{x_3}$的取值范围是$(\frac{5}{2},+∞)$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若二项式(x-$\frac{a}{x}$)6的展开式中常数项为20,则a=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知f(x)=|x-1|+|x+2|.
(1)若不等式f(x)>a2对任意实数x恒成立,求实数a的取值的集合T;
(Ⅱ)设m、n∈T,证明:$\sqrt{3}$|m+n|<|mn+3|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某公司准备将1000万元资金投入到市环保工程建设中,现有甲、乙两个建设项目选择,若投资甲项目一年后可获得的利润ξ1(万元)的概率分布列如表所示:
ξ1110120170
Pm0.4n
且ξ1的期望E(ξ1)=120;若投资乙项目一年后可获得的利润ξ2(万元)与该项目建设材料的成本有关,在生产的过程中,公司将根据成本情况决定是否在第二和第三季度进行产品的价格调整,两次调整相互独立且调整的概率分别为p(0<p<1)和1-p.若乙项目产品价格一年内调整次数X(次数)与ξ2的关系如表所示:
X012
ξ241.2117.6204.0
(Ⅰ)求m,n的值;
(Ⅱ)求ξ2的分布列;
(Ⅲ)若该公司投资乙项目一年后能获得较多的利润,求p的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.从区间[-2,2]中随机选取一个实数a,则函数f(x)=4x-a•2x+1+1有零点的概率是(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.如图,正方形ABCD的边长为8,点E,F分别在边AD,BC上,且AE=3ED,CF=FB,如果对于常数m,在正方形ABC的四条边上有且只有6个不同的点P,使得$\overrightarrow{PE}$•$\overrightarrow{PF}$=m成立,那么m的取值范围是(-1,8).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.现从6人中选4人去参加某娱乐活动,该活动共有A,B,C,D四个游戏.要求每个游戏有一人参加,且一人只能参加一个游戏,如果这6人中甲,乙两人不熊参加D游戏,则不同的选择方案种数有(  )
A.264B.240C.216D.72

查看答案和解析>>

同步练习册答案