精英家教网 > 高中数学 > 题目详情
17.函数f(x)=asinωx+acosωx(a>0,ω>0)的图象如图所示,则实数a和ω的最小正值分别为(  )
A.a=2,ω=2B.a=2,ω=1C.a=2,$ω=\frac{3}{2}$D.a=2,$ω=\frac{1}{2}$

分析 利用两角和的正弦函数公式化简函数解析式可得f(x)=$\sqrt{2}$asin(ωx+$\frac{π}{4}$),由于点($\frac{π}{3}$,2),(0,2)在函数图象上,可求a,sin($\frac{π}{3}$ω+$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$,进而结合ω>0,可得ω的最小正值.

解答 解:∵f(x)=asinωx+acosωx=$\sqrt{2}$asin(ωx+$\frac{π}{4}$),
由于点($\frac{π}{3}$,2),(0,2)在函数图象上,
可得:2=$\sqrt{2}$asin($\frac{π}{3}$ω+$\frac{π}{4}$),且2=$\sqrt{2}$asin$\frac{π}{4}$,
解得:a=2,sin($\frac{π}{3}$ω+$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$,
可得:$\frac{π}{3}$ω+$\frac{π}{4}$=2kπ+$\frac{π}{4}$,k∈Z,或$\frac{π}{3}$ω+$\frac{π}{4}$=2kπ+$\frac{3π}{4}$,k∈Z,解得:ω=6k,k∈Z,或ω=6k+$\frac{3}{2}$,k∈Z,
由于ω>0,可得,ω的最小正值为$\frac{3}{2}$.
故选:C.

点评 本题主要考查了两角和的正弦函数公式,正弦函数的图象和性质的综合应用,考查了转化思想和数形结合思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.命题p:关于x的方程x2+ax+2=0无实根,命题q:函数f(x)=logax在(0,+∞)上单调递增,若“p∧q”为假命题,“p∨q”真命题,则实数a的取值范围是(  )
A.(-2$\sqrt{2}$,+∞)B.(-2$\sqrt{2}$,2$\sqrt{2}$)C.(-2$\sqrt{2}$,1]∪[2$\sqrt{2}$,+∞)D.(-∞,2$\sqrt{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.点P为△ABC所在平面内一点,当$\overrightarrow{PA}•\overrightarrow{PB}+\overrightarrow{PB}•\overrightarrow{PC}+\overrightarrow{PC}•\overrightarrow{PA}$取最小值时,点P为△ABC的(  )
A.内心B.外心C.重心D.垂心

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率为$\frac{1}{2}$,且过点$(1,\frac{3}{2})$.若点M(x0,y0)在椭圆C上,则点$N(\frac{x_0}{a},\frac{y_0}{b})$称为点M的一个“椭点”.
(1)求椭圆C的标准方程;
(2)若直线l:y=kx+m与椭圆C相交于A,B两点,且A,B两点的“椭点”分别为P,Q,以PQ为直径的圆经过坐标原点,试求△AOB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在数列{an}中,a1=1,a1+$\frac{{a}_{2}}{{2}^{2}}$+$\frac{{a}_{3}}{{3}^{2}}$+…+$\frac{{a}_{n}}{{n}^{2}}$=an(n∈N*),则数列{an}的通项公式an=$\frac{2n}{n+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=(2017x-$\frac{1}{201{7}^{x}}$)x2017,若f(log2a)+f(log0.5a)≤$\frac{2(201{7}^{2}-1)}{2017}$,则实数a的取值范围是(  )
A.(0,2]B.(0,$\frac{2}{3}$]∪[1,+∞)C.(0,$\frac{1}{2}$]∪[2,+∞)D.[$\frac{1}{2}$,2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.四棱锥P-ABCD的底面ABCD为正方形,PA⊥底面ABCD,若AB=2,PA=1,则此四棱锥的外接球的体积为(  )
A.36πB.16πC.$\frac{9π}{2}$D.$\frac{9π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f (x)=ex-ax-1,其中e为自然对数的底数,a∈R.
(1)若a=e,函数g (x)=(2-e)x.
①求函数h(x)=f (x)-g (x)的单调区间;
②若函数F(x)=$\left\{\begin{array}{l}f(x),x≤m\\ g(x),x>m\end{array}$的值域为R,求实数m的取值范围;
(2)若存在实数x1,x2∈[0,2],使得f(x1)=f(x2),且|x1-x2|≥1,求证:e-1≤a≤e2-e.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.复数Z=i(1+i)在复平面内对应的点的坐标为(-1,1).

查看答案和解析>>

同步练习册答案