精英家教网 > 高中数学 > 题目详情
3.设$\frac{i}{1+i}$=a+bi(a,b∈R,i为虚数单位),则|a-bi|=(  )
A.1B.$\frac{1}{2}$C.$\sqrt{2}$D.$\frac{\sqrt{2}}{2}$

分析 求出a,b的值,求出|a-bi|的值即可.

解答 解:$\frac{i}{1+i}$=$\frac{i(1-i)}{(1+i)(1-i)}$=$\frac{1}{2}$+$\frac{1}{2}$i=a+bi,
故a-bi=$\frac{1}{2}$-$\frac{1}{2}$i,|a-bi|=$\sqrt{{(\frac{1}{2})}^{2}{+(-\frac{1}{2})}^{2}}$=$\frac{\sqrt{2}}{2}$,
故选:D.

点评 本题考查了复数的运算,考查复数求模问题,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.给出如下命题:
①已知随机变量X~N(2,σ2),若P(X<a)=0.32,则P(X>4-a)=0.68
②若动点P到两定点F1(-4,0),F2(4,0)的距离之和为8,则动点P的轨迹为线段;
③设x∈R,则“x2-3x>0”是“x>4”的必要不充分条件;
④若实数1,m,9成等比数列,则圆锥曲线$\frac{{x}^{2}}{m}$+y2=1的离心率为$\frac{\sqrt{6}}{3}$;
其中所有正确命题的序号是②③.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.从5种主料职工选2种,8种辅料中选3种烹制菜肴,烹制方式有5种,那么最多可以烹制出不同的菜肴种数为(  )
A.18B.200C.2800D.33600

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.四个大学生分到两个单位,每个单位至少分一个的分配方案有(  )
A.10种B.14种C.20种D.24种

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知f(x)=$\left\{\begin{array}{l}{\frac{x}{{x}^{2}+1},x≥0}\\{-\frac{1}{x},x<0}\end{array}\right.$,若函数g(x)=f(x)-t有三个不同的零点x1,x2,x3(x1<x2<x3),则
-$\frac{1}{x_1}+\frac{1}{x_2}+\frac{1}{x_3}$的取值范围是$(\frac{5}{2},+∞)$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设i是虚数单位,复数$\frac{a+i}{1+i}$为纯虚数,则实数a的值为(  )
A.-1B.1C.-2D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若二项式(x-$\frac{a}{x}$)6的展开式中常数项为20,则a=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某公司准备将1000万元资金投入到市环保工程建设中,现有甲、乙两个建设项目选择,若投资甲项目一年后可获得的利润ξ1(万元)的概率分布列如表所示:
ξ1110120170
Pm0.4n
且ξ1的期望E(ξ1)=120;若投资乙项目一年后可获得的利润ξ2(万元)与该项目建设材料的成本有关,在生产的过程中,公司将根据成本情况决定是否在第二和第三季度进行产品的价格调整,两次调整相互独立且调整的概率分别为p(0<p<1)和1-p.若乙项目产品价格一年内调整次数X(次数)与ξ2的关系如表所示:
X012
ξ241.2117.6204.0
(Ⅰ)求m,n的值;
(Ⅱ)求ξ2的分布列;
(Ⅲ)若该公司投资乙项目一年后能获得较多的利润,求p的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设F(c,0)是双曲线E:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的右焦点,$P(\frac{a^2}{c},\frac{{\sqrt{2}a}}{2})$为直线上一点,且直线垂直于x轴,垂足为M,若△PMF等腰三角形,则E的离心率为(  )
A.$\frac{{\sqrt{3}}}{2}$B.$\sqrt{3}$C.$\frac{{\sqrt{2}}}{2}$D.$\sqrt{2}$

查看答案和解析>>

同步练习册答案