精英家教网 > 高中数学 > 题目详情
15.在下列函数中,最小值为2的是(  )
A.y=2x+2-xB.y=sinx+$\frac{1}{sinx}$(0<x<$\frac{π}{2}$)
C.y=x+$\frac{1}{x}$D.y=log3x+$\frac{1}{lo{g}_{3}x}$(1<x<3)

分析 根据题意,有基本不等式的性质依次分析4个选项函数的最小值,即可得答案.

解答 解:根据题意,依次分析选项:
对于A、y=2x+2-x=2x+$\frac{1}{{2}^{x}}$,而2x>0,则有y≥2,符合题意,
对于B、y=sinx+$\frac{1}{sinx}$,令t=sinx,0<x<$\frac{π}{2}$,则0<t<1,
有y>2,y=sinx+$\frac{1}{sinx}$没有最小值,不符合题意;
对于C、y=x+$\frac{1}{x}$,有x≠0,则有y≥2或y≤-2,不符合题意;
对于D、y=log3x+$\frac{1}{lo{g}_{3}x}$,令t=log3x,1<x<3,则有0<t<1,
有y>2,y=log3x+$\frac{1}{lo{g}_{3}x}$没有最小值,不符合题意;
故选:A.

点评 本题考查基本不等式的性质,注意基本不等式的使用条件.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.在锐角三角形△ABC中,a,b,c分别是角A,B,C的对边,(a+b+c)(a+c-b)=$({2+\sqrt{3}})ac$,则cosA+sinC的取值范围为(  )
A.$({\frac{3}{2},\sqrt{3}})$B.$({\frac{{\sqrt{3}}}{2},\frac{3}{2}})$C.$({\frac{3}{2},\sqrt{3}}]$D.$({\frac{{\sqrt{3}}}{2},\sqrt{3}})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.用反证法证明命题:“三角形的内角中至少有一个不大于60°”时,结论的否定是三角形的三个内角都大于60°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知$\overrightarrow{m}$=($\frac{1}{2}$sinx,$\frac{\sqrt{3}}{2}$),$\overrightarrow{n}$=(cosx,${cos}^{2}x-\frac{1}{2}$)(x∈R),且函数f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$.
(1)求f(x)的对称轴方程;
(2)在锐角△ABC中,角A,B,C的对边分别为a,b,c,若f(A)=0,sinB=$\frac{4}{5}$,a=$\sqrt{3}$,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.三棱锥A-BCD中,AB,AC,AD两两垂直,其外接球半径为2,设三棱锥A-BCD的侧面积为S,则S的最大值为8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在△ABC中,a,b,c分别为内角A,B,C所对的边且asinB=$\sqrt{3}$bcosA
(1)求A
(2)若a=3,b=2c,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知数列{an}满足a1=1,nan-1=(n-1)an(n≥2,n∈N*),数列{bn}满足b1=$\frac{1}{2}$,b2=$\frac{1}{4}$,对任意n∈N*都有bn+12=bn+1bn+2
(1)求数列{an}、{bn}的通项公式;
(2)令Tn=a1b1+a2b2+…+anbn.求证:$\frac{1}{2}≤{T_n}$<2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知数列{an}满足:a1=-13,a6+a8=-2,且an-1=2an-an+1(n≥2),则数列{$\frac{1}{{a}_{n}{a}_{n+1}}$}的前13项和为(  )
A.$\frac{1}{13}$B.-$\frac{1}{13}$C.$\frac{1}{11}$D.-$\frac{1}{11}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,三棱柱ABE-DCF中,△EAB是正三角形,四边形ABCD是矩形,且EA=2,BC=2$\sqrt{3}$,EC=4.
(1)求证:平面EAB⊥平面ABCD;
(2)若点P在线段EA上,且PA=λEA(0<λ<1),当三棱锥B-APD的体积为$\frac{3}{2}$时,求实数λ的值.

查看答案和解析>>

同步练习册答案