精英家教网 > 高中数学 > 题目详情
10.三棱锥A-BCD中,AB,AC,AD两两垂直,其外接球半径为2,设三棱锥A-BCD的侧面积为S,则S的最大值为8.

分析 三棱锥A-BCD的三条侧棱两两互相垂直,所以把它扩展为长方体,它也外接于球,对角线的长为球的直径,然后利用基本不等式解答即可.

解答 解:设AB,AC,AD分别为a,b,c,则三棱锥A-BCD的三条侧棱两两互相垂直,所以把它扩展为长方体,
它也外接于球,对角线的长为球的直径,∴a2+b2+c2=16,
S=$\frac{1}{2}$(ab+bc+ac)≤$\frac{1}{2}$(a2+b2+c2)=8,
故答案为:8.

点评 本题考查三棱锥A-BCD的侧面积,考查学生空间想象能力,解答的关键是构造球的内接长方体,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知棱长为$\sqrt{3}$的正方体ABCD-A1B1C1D1内部有一圆柱,此圆柱恰好以直线AC1为轴,则该圆柱侧面积的最大值为(  )
A.$\frac{{9\sqrt{2}}}{8}π$B.$\frac{{9\sqrt{2}}}{4}π$C.$2\sqrt{3}π$D.$3\sqrt{2}π$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.曲线y=-ln(2x+1)+2在点(0,2)处的切线与直线y=0和y=2x围成的三角形的面积为(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=$\frac{lnx+1}{x}$,g(x)=x2-(a+1)x
(1)①求函数f(x)的最大值;
②证明:$\frac{ln2}{2^2}+\frac{ln3}{3^2}+…+\frac{lnn}{n^2}<\frac{{2{n^2}-n-1}}{{4({n+1})}}({n∈{N_+},n≥2})$.
(2)当a≥0时,讨论函数h(x)=$\frac{1}{2}{x^2}$+a-axf(x)与函数g(x)的图象的交点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.将函数y=$\sqrt{3}cosx+sinx({x∈R})$的图象向左平移m(m>0)个单位长度后,所得到的图象关于y轴对称,则m的最小值是(  )
A.$\frac{π}{6}$B.$\frac{π}{12}$C.$\frac{π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在下列函数中,最小值为2的是(  )
A.y=2x+2-xB.y=sinx+$\frac{1}{sinx}$(0<x<$\frac{π}{2}$)
C.y=x+$\frac{1}{x}$D.y=log3x+$\frac{1}{lo{g}_{3}x}$(1<x<3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.$\frac{1-tan17°tan28°}{tan17°+tan28°}$等于(  )
A.-1B.1C.$\frac{\sqrt{2}}{2}$D.-$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在棱长为2的正方体ABCD-A1B1C1D1中,E是BC的中点,F是DD1的中点,
(I)求证:CF∥平面A1DE;
(Ⅱ)求二面角A1-DE-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的渐近线方程为y=±$\frac{{\sqrt{3}}}{3}$x,若顶点到渐近线的距离为$\sqrt{3}$,则双曲线的方程为(  )
A.$\frac{x^2}{4}-\frac{{3{y^2}}}{4}$=1B.$\frac{x^2}{12}-\frac{y^2}{4}$=1C.$\frac{x^2}{4}-\frac{y^2}{12}$=1D.$\frac{{3{x^2}}}{4}-\frac{y^2}{4}$=1

查看答案和解析>>

同步练习册答案