精英家教网 > 高中数学 > 题目详情
7.定义在R上的偶函数f(x)在(0,+∞)上单调递减,则(  )
A.f(1)<f(-2)<f(3)B.f(3)<f(-2)<f(1)C.f(-2)<f(1)<f(3)D.f(3)<f(1)<f(-2)

分析 根据偶函数的性质和单调性求解.

解答 解:f(x)是定义在R上的偶函数,f(-x)=f(x).
∴f(-2)=f(2).
∵f(x)在(0,+∞)上单调递减,
∴f(3)<f(2)<f(1),即f(3)<f(-2)<f(1).
故选B.

点评 本题主要考查函数奇偶性和单调性的运用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.函数y=sin x•cos x的导数是(  )
A.cos2x+sin2xB.cos2x-sin2xC.2cos x•sin xD.cos x•sin x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.解关于x的不等式3ax2-(a+3)x+1<0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.O为原点的直角坐标系中,点A(4,-3)为△OAB的直角顶点,已知AB=2OA,且点B的纵坐标大于0
(1)求$\overrightarrow{AB}$的坐标;
(2)求圆C1:x2-6x+y2+2y=0关于直线OB对称的圆C2的方程;在直线OB上是否存在点P,过点P的任意一条直线如果和圆C1圆C2都相交,则该直线被两圆截得的线段长相等,如果存在求出点P的坐标,如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知公差不为0的等差数列{an}中,a1=7,且a2+1,a4+1,a8+1成等比数列.
(1)求数列{an}的通项公式;
(2)设数列{bn}满足bn=$\frac{3}{a_n}$,求适合方程b1b2+b2b3+…+bnbn+1=$\frac{45}{32}$的正整数n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$是夹角为60°的单位向量,$\overrightarrow{a}$=2$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$,$\overrightarrow{b}$=-3$\overrightarrow{{e}_{1}}$+2$\overrightarrow{{e}_{2}}$,则$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为(  )
A.120°B.30°C.60°D.150°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若函数y=loga(1-3ax)(a>0,a≠1)在区间(0,2)上是单调增函数,则常数a的取值范围是(0,$\frac{1}{6}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=tx,(x∈R).
(1)若t=ax+b,a,b∈R,且-1≤f(-1)≤2,2≤f(1)≤4,求点(a,b)的集合表示的平面区域的面积;
(2)若t=2+$\frac{1}{{x}^{2}-x}$,(x<1且x≠0),求函数f(x)的最大值;
(3)若t=x-a-3(a∈R),不等式b2+c2-bc-3b-1≤f(x)≤a+4(b,c∈R)的解集为[-1,5],求b,c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列函数满足f(lge)•f(lg$\frac{1}{e}$)<0的是(  )
A.f(x)=2xB.f(x)=lnxC.f(x)=x3D.f(x)=cosx

查看答案和解析>>

同步练习册答案