精英家教网 > 高中数学 > 题目详情
12.若$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$是夹角为60°的单位向量,$\overrightarrow{a}$=2$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$,$\overrightarrow{b}$=-3$\overrightarrow{{e}_{1}}$+2$\overrightarrow{{e}_{2}}$,则$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为(  )
A.120°B.30°C.60°D.150°

分析 由已知求出$\overrightarrow{a}•\overrightarrow{b}$及$|\overrightarrow{a}|$,$|\overrightarrow{b}|$,代入数量积求夹角公式得答案.

解答 解:由题意,$|\overrightarrow{{e}_{1}}|=|\overrightarrow{{e}_{2}}|=1$,且<$\overrightarrow{{e}_{1}},\overrightarrow{{e}_{2}}$>=60°,
且$\overrightarrow{a}$=2$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$,$\overrightarrow{b}$=-3$\overrightarrow{{e}_{1}}$+2$\overrightarrow{{e}_{2}}$,
∴$|\overrightarrow{a}|=\sqrt{(2\overrightarrow{{e}_{1}}+\overrightarrow{{e}_{2}})^{2}}=\sqrt{4{\overrightarrow{{e}_{1}}}^{2}+4\overrightarrow{{e}_{1}}•\overrightarrow{{e}_{2}}+{\overrightarrow{{e}_{2}}}^{2}}$=$\sqrt{4+4×1×1×\frac{1}{2}+1}$=$\sqrt{7}$,
$|\overrightarrow{b}|=\sqrt{(-3\overrightarrow{{e}_{1}}+2\overrightarrow{{e}_{2}})^{2}}=\sqrt{9{\overrightarrow{{e}_{1}}}^{2}-12\overrightarrow{{e}_{1}}•\overrightarrow{{e}_{2}}+4{\overrightarrow{{e}_{2}}}^{2}}$=$\sqrt{9-12×1×1×\frac{1}{2}+4}=\sqrt{7}$.
$\overrightarrow{a}•\overrightarrow{b}$=(2$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$)(-3$\overrightarrow{{e}_{1}}$+2$\overrightarrow{{e}_{2}}$)=$-6{\overrightarrow{{e}_{1}}}^{2}+\overrightarrow{{e}_{1}}•\overrightarrow{{e}_{2}}+2{\overrightarrow{{e}_{2}}}^{2}$=$-6+1×1×\frac{1}{2}+2=-\frac{7}{2}$.
∴cos<$\overrightarrow{a},\overrightarrow{b}$>=$\frac{\overrightarrow{a}•\overrightarrow{b}}{|\overrightarrow{a}||\overrightarrow{b}|}=\frac{-\frac{7}{2}}{\sqrt{7}×\sqrt{7}}=-\frac{1}{2}$.
则$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为120°.
故选:A.

点评 本题考查平面向量的数量积运算,考查由数量积求向量的夹角,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.己知函数f(x)=log3(x+1),若f(α)=1,则α=(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知映射f:A→B,其中A=B=R,对应法则f:x→y=($\frac{1}{2}$)${\;}^{{x}^{2}+2x}$,若对实数m∈B,在集合A中存在元素与之对应,则m的取值范围是(  )
A.(-∞,2]B.[2,+∞)C.(2,+∞)D.(0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.定义在R上的函数f(x)满足:$f({x+1})=\frac{1}{f(x)}$,并且$x∈[{-1,1}],f(x)=\left\{{\begin{array}{l}{x+a,-1≤x<0}\\{|{\frac{2}{5}-x}|,0≤x<1}\end{array}}\right.$,若$f({-\frac{5}{2}})=f({\frac{9}{2}})$,则f(5a)=(  )
A.$\frac{7}{16}$B.$-\frac{2}{5}$C.$\frac{11}{16}$D.$\frac{13}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.定义在R上的偶函数f(x)在(0,+∞)上单调递减,则(  )
A.f(1)<f(-2)<f(3)B.f(3)<f(-2)<f(1)C.f(-2)<f(1)<f(3)D.f(3)<f(1)<f(-2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)=|lgx|,若 a≠b,且f(a)=f(b),则 ab=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.x2-3x+1=0,则 ${x^2}+\frac{1}{x^2}$=11.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知点A(-1,2),B(1,2),C(-3,1),D(3,4),则向量$\overrightarrow{AB}$在$\overrightarrow{CD}$方向上的投影为(  )
A.$\frac{{4\sqrt{5}}}{5}$B.$\frac{{3\sqrt{15}}}{2}$C.$-\frac{{4\sqrt{5}}}{5}$D.$-\frac{{3\sqrt{15}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设△ABC的内角A,B,C所对的边为a,b,c,a=4,b=4$\sqrt{3}$,A=30°,则B=(  )
A.60°B.60°或120°C.30D.30°°或150°

查看答案和解析>>

同步练习册答案