精英家教网 > 高中数学 > 题目详情
已知cos(75°+α)=
1
3
,其中α为第三象限角,sin(105°-α)=
 
考点:运用诱导公式化简求值
专题:
分析:由α为第三象限角,求出α+75°的范围,利用同角三角函数间基本关系求出sin(75°+α)的值,原式变形后利用诱导公式化简即可求出值.
解答: 解:∵cos(75°+α)=
1
3
,其中α为第三象限角,即180°+k360°<α<270°+k360°(k∈Z),
∴255°+k360°<75°+α<345°+k360°(k∈Z),
∴sin(75°+α)=-
1-(
1
3
)2
=-
2
2
3

则sin(105°-α)=sin[180°-(75°+α)]=sin(75°+α)=-
2
2
3

故答案为:-
2
2
3
点评:此题考查了运用诱导公式化简求值,熟练掌握诱导公式是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=ax2-
4
3
ax+b,f(1)=2,f′(1)=1.
(1)求f(x)的解析式;
(2)求过P(0,1)且与曲线y=f(x)相切的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知方程x2+(1+a)x+1+a+b=0的两根为x1,x2,并且0<x1<1<x2,则
b
a
的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<
π
2
)的振幅为2,最小正周期为π,且f(x)≤f(
π
6
)对?x∈R恒成立.
(Ι)求函数f(x)的解析式,并求其单调递增区间.
(Ⅱ)若f(
α
2
)=-
2
3
,α∈(0,π),求cosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若sinα+cosα=
2
,则tanα+
1
tanα
的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面向量
a
=(
3
,-1),
b
=(
1
2
3
2
),若存在不同时为零的实数k和t,使
x
=
a
+(t2-3)
b
y
=-k
a
+t
b
x
y

(1)试求函数关系式k=f(t);
(2)若t∈(0,+∞)时,不等式k≥
1
2
t2+
1
4
mt恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方体ABCD-A1B1C1D1中,E是DD1的中点.
(1)求证:BD1∥平面AEC;
(2)求BC1与平面ACC1A1所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

直线y=x被曲线2x2+y2=2截得的弦长为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

求下列函数的值域:
(1)y=x+
5
x
(x≥1);
(2)y=x+
5
x
(x≤-3).

查看答案和解析>>

同步练习册答案