精英家教网 > 高中数学 > 题目详情
如图,在四棱锥P—ABCD中,PA⊥平面ABCD,四边形ABCD为正方形,PA=AB=4,G为PD的中点,E是AB的中点.

(Ⅰ)求证:AG∥平面PEC;  
(Ⅱ)求点G到平面PEC的距离.
(Ⅰ)详见解析;(Ⅱ)

试题分析:(Ⅰ)要证明一条直线和一个平面平行,只需在面内找一条直线与之平行,如果找不到,可将这条直线平移到平面内,取中点,连接,则的中位线,则有,,又,,∴可证四边形是平行四边形,从而,可证∥面
(Ⅱ)点到平面的距离指的是点到平面垂线段的长度,如果垂足不好确定,可考虑四面体的等体积转换,由(Ⅰ)知∥面,∴点和点到面的距离相等,设点到平面的距离为
,可求.

试题解析:(Ⅰ)证明:取PC的中点F,连接GF,则,且
,,四边形GAEF是平行四边形 ∴------4分
,   ∴∥面 .    6分
(Ⅱ)由∥面,知点和点到面的距离相等,设点到平面的距离为
∴ ,      9分
 ,
     10分
,∴

,∴ G点到平面PEC的距离为.         12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥A-BCDE中,底面四边形BCDE是等腰梯形,BC∥DE, =45 ,O是BC的中点,AO= ,且BC=6,AD=AE=2CD=2 ,

(1)证明:AO⊥平面BCD;(2)求二面角A-CD-B的平面角的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
在三棱柱中,侧棱,点的中点,
(1)求证:∥平面
(2)为棱的中点,试证明:

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

对于平面和直线,下列命题中真命题是(    )
A.若,则
B.若,则
C.若,则
D.若,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知两个平面垂直,下列命题中:
(1)一个平面内已知直线必垂直于另一个平面内的任意一条直线;
(2)一个平面内已知直线必垂直于另一个平面内的无数条直线;
(3)一个平面内的任意一条直线必垂直于另一个平面;
(4)过一个平面内任意一点作交线的垂线,则此垂线必垂直于另一个平面.
其中正确命题的个数有(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

关于直线以及平面,给出下列命题:
①若,则
②若,则
③若,则
④若
其中正确的命题是(      )
A.①②B.②③C.②④D.①④

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在平面几何里,有勾股定理:“设△ABC的两边AB,AC互相垂直,则AB2+AC2=BC2.”拓展到空间,类比平面几何的勾股定理,研究三棱锥的面面积与底面面积间的关系。可以得出的正确结论是:“设三棱锥A—BCD的三个侧面ABC、ACD、ADB两两相互垂直,则                                       ”.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

三棱柱中,所成角均为,且,则三棱锥的体积为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,正方体ABCDA1B1C1D1的棱长为4,M为BD1的中点,N在A1C1上,且|A1N|=3|NC1|,则MN的长为   .

查看答案和解析>>

同步练习册答案