精英家教网 > 高中数学 > 题目详情
11.已知平面向量$\overrightarrow{a},\overrightarrow{b}$满足|$\overrightarrow{a}$|=$\sqrt{2}$,$\overrightarrow{b}$=(1,0)且$\overrightarrow{a}$⊥($\overrightarrow{a}$-2$\overrightarrow{b}$),则|2$\overrightarrow{a}$+$\overrightarrow{b}$|的值为(  )
A.$\sqrt{13}$B.13C.$\sqrt{5}$D.5

分析 由$\overrightarrow{a}$⊥($\overrightarrow{a}$-2$\overrightarrow{b}$),可得$\overrightarrow{a}•(\overrightarrow{a}-2\overrightarrow{b})$=0可求$\overrightarrow{a}•\overrightarrow{b}$,然后由向量的数量积的 性质|2$\overrightarrow{a}$+$\overrightarrow{b}$|=$\sqrt{(2\overrightarrow{a}+\overrightarrow{b})^{2}}$=$\sqrt{4{\overrightarrow{a}}^{2}+4\overrightarrow{a}•\overrightarrow{b}+{\overrightarrow{b}}^{2}}$,代入即可求解

解答 解:∵|$\overrightarrow{a}$|=$\sqrt{2}$,$\overrightarrow{b}$=(1,0)且$\overrightarrow{a}$⊥($\overrightarrow{a}$-2$\overrightarrow{b}$),
$\overrightarrow{a}•(\overrightarrow{a}-2\overrightarrow{b})$=${\overrightarrow{a}}^{2}-2\overrightarrow{a}•\overrightarrow{b}$=0
∴$\overrightarrow{a}•\overrightarrow{b}$=1
则|2$\overrightarrow{a}$+$\overrightarrow{b}$|=$\sqrt{(2\overrightarrow{a}+\overrightarrow{b})^{2}}$=$\sqrt{4{\overrightarrow{a}}^{2}+4\overrightarrow{a}•\overrightarrow{b}+{\overrightarrow{b}}^{2}}$=$\sqrt{4×2+4×1+1}$=$\sqrt{13}$
故选:A

点评 本题 主要考查了向量的数量积性质的简单应用,解题要注意性质的灵活应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=exsinx-cosx,g(x)=xcosx-$\sqrt{2}$ex,其中e是自然对数的底数.
(1)判断函数y=f(x)在(0,$\frac{π}{2}$)内的零点的个数,并说明理由;
(2)?x1∈[0,$\frac{π}{2}$],?x2∈[0,$\frac{π}{2}$],使得f(x1)+g(x2)≥m成立,试求实数m的取值范围;
(3)若x>-1,求证:f(x)-g(x)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知椭圆a2x2-$\frac{a}{2}{y^2}$=1的焦距为4,则a的值为$\frac{1-\sqrt{5}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知$\overrightarrow{|OA|}$=1,$\overrightarrow{|OB|}$=2,∠AOB=$\frac{2π}{3}$,$\overrightarrow{OC}$=$\frac{1}{2}$$\overrightarrow{OA}$-$\frac{1}{4}\overrightarrow{OB}$,则$\overrightarrow{OA}$•$\overrightarrow{OC}$=$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设函数f(x)=$\left\{\begin{array}{l}{log_2}x,x>0\\{4^x},x≤0\end{array}$则f(f($\frac{1}{2}$))=$\frac{1}{4}$;若函数g(x)=f(x)-k存在两个零点,则实数k的取值范围是(0.1].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数f(x)=x3+ax2+bx+a2(a>0)在x=1处的取得极值10,则a+b=-7.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=alnx-ax-2(a∈R).
(1)讨论函数f(x)的单调性;
(2)若函数f(x)的图象在点(2,f(2))处的切线的倾斜角为135°,且函数g(x)=f(x)-mx2-2x+4存在单调递减区间,求m的取值范围;
(3)试比较$\frac{ln{2}^{2}}{{2}^{2}}$+$\frac{ln{3}^{2}}{{3}^{2}}$+$\frac{ln{4}^{2}}{{4}^{2}}$+…+$\frac{ln{n}^{2}}{{n}^{2}}$与$\frac{(n-1)(2n+1)}{2(n+1)}$的大小(n∈N*,n≥2),并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.空间直角坐标系中,A(-1,1,-a),B(-a,3,-1),若|AB|=2,则a=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知a∈R,则“a>2”是“a2>2a”的充分不必要条件(填:充分不必要、必要不充分、充要、既不充分又不必要)

查看答案和解析>>

同步练习册答案