分析 过A作AE⊥BD,则AE为棱锥的高,利用勾股定理求出BD,AE,代入体积公式计算即可.
解答
解:取BD中点E,连结AE.
∵AB=AD,E是BD的中点,
∴AE⊥BD,
∵面ABD⊥面CBD,面ABD∩面CBD=BD,AE?平面ABD,
∴AE⊥平面BCD,
∵CD⊥BD,∴BD=$\sqrt{B{C}^{2}-C{D}^{2}}$=2$\sqrt{3}$.
∴BE=$\frac{1}{2}BD=\sqrt{3}$,
∴AE=$\sqrt{A{B}^{2}-B{E}^{2}}$=1.
∴VA-BCD=$\frac{1}{3}{S}_{△BCD}•AE$=$\frac{1}{3}×\frac{1}{2}×2\sqrt{3}×2×1$=$\frac{2\sqrt{3}}{3}$.
故答案为:$\frac{2\sqrt{3}}{3}$.
点评 本题考查了面面垂直的性质,棱锥的体积计算,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com