精英家教网 > 高中数学 > 题目详情
7.已知函数$f(x)=\left\{{\begin{array}{l}{x+\frac{1}{2},x∈[0,\frac{1}{2})}\\{{2^{x-1}},x∈[\frac{1}{2},2)}\end{array}}\right.$,若存在x1,x2,当0≤x1<x2<2时,f(x1)=f(x2),则x1f(x2)-f(x2)的取值范围为(  )
A.$(0,\frac{{2-3\sqrt{2}}}{4})$B.$[-\frac{9}{16},\frac{{2-3\sqrt{2}}}{4})$C.$[\frac{{2-3\sqrt{2}}}{4},-\frac{1}{2})$D.$[-\frac{9}{16},-\frac{1}{2})$

分析 先作出函数图象然后根据图象,根据f(x1)=f(x2),确定x1的取值范围然后再根据x1f(x2)-f(x2),转化为求在x1的取值范围即可.

解答 解:作出函数的图象:
∵存在x1,x2,当0≤x1<x2<2时,f(x1)=f(x2
∴0≤x1<$\frac{1}{2}$,
∵x+$\frac{1}{2}$在[0,$\frac{1}{2}$)上的最小值为$\frac{1}{2}$;
2x-1在[$\frac{1}{2}$,2)的最小值为$\frac{\sqrt{2}}{2}$
∴x1+$\frac{1}{2}$≥$\frac{\sqrt{2}}{2}$,x1≥$\frac{\sqrt{2}-1}{2}$,
∴$\frac{\sqrt{2}-1}{2}$≤x1<$\frac{1}{2}$.
∵f(x1)=x1+$\frac{1}{2}$,f(x1)=f(x2
∴x1f(x2)-f(x2)=x1f(x1)-f(x1)2
=${x}_{1}^{2}+\frac{1}{2}{x}_{1}$-(x1+$\frac{1}{2}$)=x12-$\frac{1}{2}$x1-$\frac{1}{2}$,
设y=x12-$\frac{1}{2}$x1-$\frac{1}{2}$=(x1-$\frac{1}{4}$)2-$\frac{9}{16}$,($\frac{\sqrt{2}-1}{2}$≤x1<$\frac{1}{2}$),
则对应抛物线的对称轴为x=$\frac{1}{4}$,
∴当x=$\frac{1}{4}$时,y=-$\frac{9}{16}$,
当x=$\frac{\sqrt{2}-1}{2}$时,y=$\frac{2-3\sqrt{2}}{4}$,
即x1f(x2)-f(x2)的取值范围为[-$\frac{9}{16}$,$\frac{2-3\sqrt{2}}{4}$).
故选:B.

点评 本题主要考查分段函数的应用,以及函数零点和方程之间的关系,利用二次函数的单调性是解决本题的关键,综合性强,难度较大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知f(x)=ax2+bx+c,求证:f′(x0)=2ax0+b.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知sin(3π-α)=$\frac{1}{3}$,则cos2α等于(  )
A.$\frac{7}{9}$B.-$\frac{7}{9}$C.$\frac{8}{9}$D.-$\frac{8}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数f(x)=$\left\{\begin{array}{l}{{e}^{x},x≥0}\\{-2x,x<0}\end{array}\right.$,若关于x的方程f[f(x)]+k=0恰有两个不等实数根x1,x2,则x1+x2的最大值为(  )
A.-$\frac{1}{2}+ln2$B.$\frac{1}{2}-ln2$C.-1+ln2D.1+ln2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知x,y∈{1,2,3,4,5,6},且x+y=7,则$y≥\frac{x}{2}$的概率(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{1}{2}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=mlnx+x2.(m为常数)
(Ⅰ)当x∈[1,e]时,求函数y=f(x)的零点个数;
(Ⅱ)是否存在正实数m,使得对任意x1、x2∈[1,e],都有$|{f({x_1})-f({x_2})}|≤|{\frac{1}{x_1}-\frac{1}{x_2}}|$,若存在,求出实数m的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.为比较甲、乙两地某月11时的气温情况,随机选取该月中的5天中11时的气温数据(单位:℃)制成如图所示的茎叶图,考虑以下结论:
①甲地该月11时的平均气温低于乙地该月11时的平均气温
②甲地该月11时的平均气温高于乙地该月11时的平均气温
③甲地该月11时的气温的标准差小于乙地该月11时的气温的标准差
④甲地该月11时的气温的标准差大于乙地该月11时的气温的标准差
其中根据茎叶图能得到的正确结论的编号为(  )
A.①③B.①④C.②③D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设等差数列{an}满足3a8=5a15,且$a_1^{\;}>0$,Sn为其前n项和,则数列{Sn}的最大项为(  )
A.$S_{23}^{\;}$B.S24C.S25D.S26

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知菱形ABCD的边长为2,∠BAD=60°,M为CD的中点,若N为该菱形内任意一点(含边界),则$\overrightarrow{AM}•\overrightarrow{AN}$的最大值为9.

查看答案和解析>>

同步练习册答案