精英家教网 > 高中数学 > 题目详情
在△ABC中,角A,B,C的对边分别为a,b,c,已知acosB-bsinB=c,且cosA=-
1
3

(Ⅰ)求sinB;
(Ⅱ)若c=7,求△ABC的面积.
考点:正弦定理,两角和与差的正弦函数
专题:解三角形
分析:(Ⅰ)利用已知条件结合正弦定理以及三角形的内角和化简表达式,然后求sinB的值;
(Ⅱ)通过sinC=sin(A+B),结合两角和的增函数,求出sinC的值,利用正弦定理求出b,即可求△ABC的面积.
解答: 解:(Ⅰ) 由题意得∵cosA=-
1
3

由asinB-bsinB=c
∴sinAsinB-sinBsinB=sin(A+B)
∴-sinBsinB=cosAsinB⇒sinB=-cosA 
cosA=-
1
3
sinB=-cosA=
1
3
 
(Ⅱ)∵sinC=sin(A+B)=sinAcosB+cosAsinB 
=
2
2
3
2
2
3
-
1
3
1
3
=
7
9
 
又由正弦定理得:
b
sinB
=
c
sinC
⇒b=3
S ABC=
1
2
bcsinA=
1
2
•7•3•
2
2
3
=7
2
点评:本题考查正弦定理的应用两角和与差的三角函数以及三角形的内角和公式的应用,考查分析问题解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)若f(x)=2x2+1,φ(x)=cosx,则f
φ(x)
 
=
 

(2)若f(x)=cosx,φ(x)=2x2+1,则f
φ(x)
 
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在平面坐标系xOy之中,点A(0,-n),B(0,n)(n>0),命题p:若存在某个点P在圆(x+
3
2+(y-1)2=1上,使得∠APB=
π
2
,则1≤n≤3;命题q:函数f(x)=
4
3
-log3x在区间(3,4)内没有零点,下列命题为真命题的是(  )
A、p∧(¬q)
B、p∧q
C、(¬p)∧q
D、(¬p)∨q

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x2-2x+2
x-1
(x>1),当且仅当x=
 
时,f(x)取到最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

要得到函数y=sin(2x+
π
3
)的图象,只需将函数y=sin2x的图象(  )
A、向左平移
π
3
个单位长度
B、向右平移
π
3
个单位长度
C、向左平移
π
6
个单位长度
D、向右平移
π
6
个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:

已知经过A(-2,0)和点B(1,3a)的直线l1与经过点P(0,-1)和点Q(a,-2a)的直线l2互相垂直,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,tanA=2,tanB=3,求∠C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,D为AB上一点,CD=21,AC=31,AD=20,∠B=60°,则BC的长为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
2x+1
x
(x>0),数列{an}满足a1=1,an=f(
1
an-1
)
,(n∈N*,且n≥2).
(1)求数列{an}的通项公式;
(2)设T2n=-4(a2+a4+a6+…+a2n),若T2n>4tn2对n∈N*恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案