精英家教网 > 高中数学 > 题目详情
等比数列{an}的前n项和为Sn,若S1,S3,S2成等差数列,则{an}的公比q=
 
考点:等差数列与等比数列的综合
专题:等差数列与等比数列
分析:依题意有a1+(a1+a1q)=2(a1+a1q+a1q2),从而2q2+q=0,由此能求出{an}的公比q.
解答: 解:∵等比数列{an}的前n项和为Sn,S1,S3,S2成等差数列,
∴依题意有a1+(a1+a1q)=2(a1+a1q+a1q2)
由于a1≠0,故2q2+q=0,
又q≠0,解得q=-
1
2

故答案为:-
1
2
点评:本题考查等比数列的公比的求法,是基础题,解题时要注意等差数列和等比数列的性质的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

将函数f(x)=Asin(ωx+φ)(A>0,ω>0)的图象向左平移
π
2
个单位,所得函数图象与f(x)图象关于x轴对称,则ω的值不可能是(  )
A、2B、4C、6D、10

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线x2=2py(p>0),抛物线上一点A(a,4)到抛物线旳准线的距离为5.
(1)求抛物线的方程;
(2)过点M(2,-1)作抛物线的两条切线,切点分别为B,C,求证:MB⊥MC.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆Q(x+2)2+y2=1,P(x、y)为圆上任一点,求
y-2
x-1

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,侧棱垂直底面的三棱柱ABC-A1B1C1的底面ABC位于平行四边形ACDE中,AE=2,AC=4,∠AEB=60°,点B为DE中点,连接A1E.
(1)求证:平面A1BC⊥平面A1ABB1
(2)设四棱锥A1-AEBC与四棱锥A1-B1BCC1的体积分别为V1,V2,求V1:V2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

求与直线3x+y+1=0垂直且在两坐标轴上截距之和为
2
3
的直线l的方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

先化简,再求值:
1
x+2
-
x2-4x+4
x2-x
÷(x+1-
3
x-1
),其中x满足x2+2x-4=0.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=f(x)的满足性质:①定义域为R;②对于任意x1、x2,都有f(x1+x2)=f(x1)•f(x2);③在R上是减函数,请写出一个满足上述性质的函数
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某几何体的三视图如图所示,则该几何体的体积为
 

查看答案和解析>>

同步练习册答案